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ABSTRACT  

ABSTRACT 
Chronic wound is an important national healthcare problem, compounded by the fact that patients 

with chronic diseases, such as diabetes, are always vulnerable to developing chronic wounds. 

Wound care research has two strands: clinical and computational. On the clinical side, research 

has been focusing on how to effectively treat wounds. This includes measuring wounds, tracking 

their progression with time, and assessing their health. On the computational side, little has been 

done to treat a wound as an engineering system that needs to be modeled and analyzed with the 

ultimate goal of predicting the progress of wound healing and determining the factors that influence 

wound healing. 

 

This dissertation presents three predictive statistical models: multiple linear regression, nonlinear 

regression, and neural networks and compares their performance. These models take wound 

parameters such as length, width, and depth as inputs and produce the remaining time to heal as 

an output. These predictive models also allow us to determine the wound parameters that are 

most influential on wound healing. These models are developed and analyzed with insight gained 

from four major wound clinics across the country.  

 

The first predictive modeling technique that we analyze is multiple linear regression. We produce 

various linear regression models from the inputs, such as length, width, depth granulation, and 

necrotic tissue. The response variable is the time to heal for the respective wound. Since the data 

being analyzed deviated considerably from the linearity, the prediction results are poor, and 

confidence in the observations is weak. 

 

The second type of predictive model constructs the foundation equation using survival analysis and 

Cox regression, a form of nonlinear regression relative to time-to-event situations. Survival analysis 

and Cox regression allows us to assess the relationship between the covariates and the probability 

of survival. The inputs for the Cox regression algorithms were length, width, depth, and granulation. 
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The output is the probability that a wound will “survive” until time t. This model provided the most 

accurate prediction results. 

 

The third and final type of predictive model is based on neural networks. We design multiple feed-

forward multilayer perceptron neural networks. They are all trained with a backpropagation 

algorithm. We used the same set of inputs that are used in the nonlinear regression models. The 

network output is the time it takes the wound to heal. Unlike Cox regression, the neural network 

model could not be individualized and therefore gave less accurate predictions. Further, we believe 

that patient demographics would have a considerable impact on the accuracy of the neural 

network models.  

 

In conclusion, the research presented in this dissertation aims to offer a framework toward 

predicting chronic wound healing time. The outcomes of this project are beneficial to building a 

chronic wound predictive modeling system with the capabilities of integrating two-dimensional 

imaging and three-dimensional modeling with predictive analytics to provide patients and clinicians 

with an estimated time to wound closure. Two important extensions of this research are to further 

test and validate the assessment capabilities of using wound three-dimensional modeling by 

finding and selecting high-quality wound images and to incorporate wound imaging and statistical 

predictive models in an easy-to-use system for clinical practice. 
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1 CHAPTER 1 INTRODUCTION 

CHAPTER ONE 
Introduction 

11.1  OVERVIEW 

A wound can occur anywhere, at any time, either by accident or from constant pressure. A wound 

is an injury to living tissue caused by an extrinsic agent and comes in various shapes and sizes [1-

3]. Wounds typically develop in physical locations that are difficult to see, difficult to reach, or lack 

feeling and nerve endings due to disease. Unfortunately, those who are susceptible to certain 

diseases, such as diabetes, are more prone to the development of wounds. However, regardless 

of the tendency of a person to develop wounds, the common wound locations remain the same. 

Wounds are more likely to develop in the appendages of the human body than anywhere else. 

Areas of the body such as the hands, buttocks, and feet, which experience continuous and 

repetitive pressure, are most susceptible to the development of wounds. 

 

Wound healing represents a critical healthcare issue. Wounds are difficult and expensive to treat 

and to heal. The length of time it takes for a wound to heal is dependent on multiple factors, such 

as optimal moisture ratio, wound depth, and necrotic (dead) tissue. Naturally forming wounds tend 

to occur when there is unrelieved pressure or friction over a distributed area for a period of time. 

For this study, we will investigate the robustness and accuracy of predictive models to estimate the 

time to heal for chronic, nonhealing wounds.  

 

According to the Mayo Clinic, wounds tend to develop quickly and are often arduous to treat [4]. A 

recent cross-sectional study that measured pressure wound pain in an acute care setting showed 

that 33.3% of patients were unable to respond to the evaluation tools. This study used the Faces 

Rating Scale [5]. After a wound has developed, the concern for clinicians and patients is the 

probability of infection. The infection rate of traumatic wounds varies from about 1% to 31%. The 

likelihood of infection is based on the wound characteristics, such as the nutrition of the patient, 
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whether the patient is obese or smokes, and the genetic predispositions of the patient [6]. Previous 

studies have involved bacterial counts and moisture levels to measure the infection of the wound 

bed. Both of these types of measurements require invasive techniques to the patient and the 

wound bed. Pressure wounds in particular are due to extended stays in one position. Millions of 

people are in jeopardy for developing a disease such as diabetes, and as many as 25% of these 

patients are at moderate to high risk for wounds during their lifetimes [7].  

 

Small wounds and blisters can cause catastrophic issues, such as lower limb amputations. 

Besides the physical consequences of an amputation, there are psychological consequences, as 

well. Preventing wounds will, in all likelihood, reduce infection and amputation, but preventive 

measures and devices need to be emplaced to give patients the proper tools [8]. At least 85% of 

lower extremity amputations are preceded by a diabetic foot wound [7]. Research shows that the 

incidence of amputations has not significantly decreased despite new technology [9, 10].  

 

A Dutch study found that the cost associated with the care of wounds are the third highest after 

those treated for cancer and cardiovascular diseases [11, 12]. In addition to the time and pain of 

treating a pressure wound, the price of a single full-thickness wound is estimated to be as much as 

$70,000. The U.S. alone has been estimated to spend $11 billion per year for wound expenditures 

[13, 14].  

 

As the epidemic of wounds increases, wounds, blisters, sores, and cuts become inherent 

problems [15]. Decubitus wounds are worldwide health concerns [16]. Consequently, there is a 

growing need, both in the research and the commercial market for early detection systems and 

preventive tools. Diabetes is the leading cause of nontraumatic lower extremity amputations [17, 

18]. Approximately 60% of nontraumatic lower-limb amputations occur in diabetic patients. And 

approximately 14% to 26% of patients with diabetes develop foot ulcers that will require 

amputation of the foot [17]. Worldwide, there is a diabetic amputation every 30 seconds [19]. 

Regrettably, 50% of amputees will develop a wound or infection in the contralateral (other) limb 

within 18 months, and 58% will have a contralateral amputation three to five years after the first 

amputation [20].  

 

Approximately 2% of the U.S general population suffer from chronic, nonhealing wounds [21]. 

Conservatively, the cost of treating these nonhealing wounds is estimated to exceed $50 billion per 

year, approximately 10 times more than the annual budget of the World Health Organization [21-

24]. The prevalence of wound healing is similar to that of heart failure and cardiac diseases [25]. 
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However, unlike cardiac diseases, little is known regarding the comparative treatments of wounds 

and their respective outcomes [21, 25]. Additional factors that contribute to the healing time of a 

wound are patient characteristics, such as diet, exercise, average blood flow, and living 

environment [26]. These unrelated but patient-controlled factors can greatly impact the healing 

time of a wound. For patients who suffer from chronic wounds, there are a number of methods to 

heal and alleviate wound conditions. However, there are no systems that assist in diagnostic 

measures.  

 

There are few methodologies to help affect the decision for clinicians regarding wound care, how 

wounds are evaluated, and how wounds are treated. The epidemiology of wounds have varied 

incident rates ranging from 0.4% to 38% in acute care, 2.2% to 23.9% in long-term care, and 9% 

to 17% for in-home care [27]. In the U.S. alone, an estimated 2.5 million ulcers are treated each 

year in acute care facilities [27]. Monitoring wound progression over time is the main purpose of 

this research. A wound can be a tear, a scrape, or a cut  simply anything that damages the 

protective layer of the skin [28]. Wounds can occur anywhere on the body and range anywhere 

from a small paper cut to a large gash. Similarly, traumatic wounds are a greater challenge to heal 

without infection due to their nature, size, depth, and moisture. Despite the range of severity and 

commonalities of wounds, there are no predictive modeling systems to assist physicians in 

quantifying and diagnosing wound progression. Given the magnitude of the problem of nonhealing 

chronic wounds and the lack of a robust system to assess them, we investigate the clinical 

evaluation and predictive modeling of chronic, nonhealing wounds. 

11.2  MOTIVATION 

There is great interest in understanding chronic wound care assessment. There is also great 

interest in standardizing the process of wound care and wound analysis. The baby-boomer 

generation is redefining many aspects of the healthcare industry. Baby boomers are people who 

were born during the post-World War II baby boom between 1946 and 1964 [29]. As baby 

boomers enter the next phase of their lives, this population of people (approximately 79 million in 

the U.S.) are, on average healthier and have longer life expectancies than were previous 

generations [30]. This population remains more active and more independent than their 

predecessors. Due to the size of this population, it has developed and attracted multiple disciplines 

in studying gerontology from a psychological, biological, and engineering perspective. The boomer 

population has redefined aspects of the society, the culture, and now healthcare.  
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Approximately 6.5 million people suffer from chronic wounds in the U.S. [31] . This number is 

expected to exponentially rise due to this aging boomer population [32]. Wound care assessment 

has many limitations  specifically, budgets, equipment, and tools. These limitations make it 

challenging to consistently treating wounds across multiple clinics. Wound care assessment and 

healing depends heavily on the capability of clinicians and the systems at their disposal to handle 

the development and treatment of chronic wounds. These tasks involve understanding and 

adapting chronic wound assessments to handle the variability within each patient.  

 

Using predictive modeling systems to predict for such a diverse group of patients is challenging. To 

build a robust and adaptive predictive system, we suggest that certain control systems must 

integrate common properties of wounds, such as surface area, volume, and temperature through 

the systems’ emergent behavior. From a complex systems engineering perspective, the systems 

approach for wound care and the development of a predictive modeling and analysis for time-

varying wound progression and healing represent a promising path using the common properties 

of wounds. 

11.3  OPEN RESEARCH ISSUES 

A distinct difference exists between ideal wound assessment methods and the current common 

practice. There is still a debate among researchers about the effectiveness of measurable wound 

parameters, such as size, shape, and color, and what measures best reflect accurate wound 

healing [33, 34]. However, there seems to be a common agreement that there is no established 

best-practices assessment and treatment for wound healing. There are, nevertheless, 

comparatively better practices than others [33, 35, 36]. Currently, most wound evaluation methods 

use typical physical properties, such as size, shape, and color, that manifest themselves externally. 

In this study, we examine the issues associated with assessing wound health. More specifically, we 

look at the aspects of wound data collection, such as the difficulty of acquiring wound depth as 

part of wound assessment.  

 

To date, there have been extensive studies performed on best wound healing practices [22, 28, 

33, 37-39], evaluation of wound analysis tools, and wound healing measuring properties. However, 

most of these practices are limited to physical and visual properties of the wound rather than 

internal properties. We assume that this limitation is due not to a lack of investigation but to a lack 

of appropriate tools in clinical practice. In the study, we focus on methodologies that are relevant 

to obtaining wound measurements, such as size, shape, color, and necrotic tissue. Unfortunately, 

most of these methods are still subjective when it comes to forming conclusions about the data. 
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The methodology that we present in this study is applicable and transferable as assessment 

techniques improve to include both biological and physical wound characteristics. 

 

Width, length, depth, surface area, and volume measurements are the most frequently obtained 

physical wound characteristics [33]. St-Supery et al. [33] have published a study on 29 wound 

healing evaluation methods in which the authors extensively reviewed one-dimensional and two-

dimensional wound analysis tools [33]. From their review, the authors found that the most common 

limitation of these evaluation methods is the subjectivity and lack of sensitivity of the users and the 

tools [33]. Area measurements are among the most frequently used methods for assessing 

wounds in a clinical setting [33, 40]. For many of the current processes in clinical and research 

settings, the primary limitations are the sensitivity of the shape, contact with the wound, and the 

inability to have accurate manual or digital planimetry measurement of plane surfaces due to 

the size of the tablet acquiring the wound boundary. 

 

Surface area measurements are most common in wound condition observations due to ease of 

measurements [41]. Individuals in research and clinical practice can use the principal imaging 

methods: planimetry, digital imaging, or stereophotogrammetry. Digital images provide full-scale 

imaging of the wounds but are limited to visibility and contour shape. Many instances exist of two-

dimensional digital images in which the wound of a patient is on a curved surface, resulting in a 

distorted photo [33, 40, 42]. The digital image of a curved surface can lead to an overestimation or 

an underestimation of wound size. Another issue in wound photography arises when a wound 

exceeds the size of the image frame. The inability to photograph the full wound in a single frame 

can also lead to problematic size estimations. Stereophotogrammetry photography uses two or 

more images from slightly different perspectives to create a composite image using triangulation to 

allow for linear, area, and volume estimations [33, 43]. Stereophotogrammetry is a hybrid between 

one-dimensional and three-dimensional imaging. Two-dimensional images of wounds are 

beneficial for gathering surface data, but much of the healing takes place underneath the visible 

wound bed.  

 

Many factors influence wound healing, specifically with regard to wound volume. Factors that 

primarily influence wound volume and wound healing are wound debridement; patient positioning; 

and edema, an abnormal accumulation of fluid. We have not found previous literature that 

documents successful wound volume measurement methodologies that accurately account for 

wound healing. Currently, only a few general methods can measure wound volume. The first 

method is a generalized linear approximation that uses basic geometrical shapes and volume 
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formulas to estimate the volume of the wound [21, 44]. The limitation of this method is that it bases 

all measurements on an approximation, which has a tendency to produce an overestimation or 

underestimation of wound volume. Similarly, the second most common method of measuring 

wound volume is to use various types of saline-gel fillings to physically measure the wound volume 

by injecting fluids into an open, sensitive area [45]. These injectable fluids have a high probability of 

contamination and leaking, and they may cause an overestimation of the wound volume. The most 

crucial aspect of these fillings is the unnecessary contact with the wound bed. 

 

Currently available three-dimensional wound imaging systems use techniques such as light 

reflection, laser optics, compilation of standard images, and stereophotogrammetry [24, 38, 46-

48]. Some of these techniques are noncontact methods. Many of these systems take into account 

irregular wound shapes and are portable. There are, however, some limitations to these systems. 

For example, the structured light-based method is limited to wounds that “are not very small and 

not very large” [24, 38, 48]. Additionally, the accuracy of the measurement depends on the 

accuracy of the quality of calibration. Furthermore, the operator defines the edge of the wound 

rather than the system. The limitations were common with most other three-dimensional wound 

imaging systems. The restriction of a stereophotogrammetric system is that the accuracy of 

measurements depends on the training of the operator. Further, measurements using this system 

are cumbersome, time-consuming, and costly.  

11.4  PROBLEM DEFINITION AND OBJECTIVE 

Treating and monitoring wounds vary with each patient and with each wound. Tracking wound 

progression is even more difficult. With various levels of standards of care, tracking wound 

progression is inconsistent across wound clinics. The purpose of this dissertation is threefold. First, 

it contributes to the understanding of chronic, lower appendage wound assessment tools and 

techniques. We look to contribute to the understanding of how various wound characteristics 

impact the length of wound healing time. Second, it identifies certain wound traits that can be 

characterized quantitatively and that provide indication of overall wound health. Third, it 

investigates and formulates an accurate algorithm and system model to predict the amount of time 

left to heal for lower appendage chronic wounds. 

1.5  PROPOSED SOLUTION 

In this dissertation, we explore and investigate chronic wound healing practices and their tools and 

instruments for the purpose of developing models that contribute to the prediction of wound 
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healing time. This dissertation contribution has three main components: 1) retrospective and 

current patient two-dimensional and three-dimensional image analysis; 2) predictive models and 

algorithms; and 3) recommendations for routine chronic wound management. 

 

The objective of this research is to develop a methodology that can accurately predict the amount 

of time remaining for a chronic, wound during the healing process. This research has five primary 

objectives: 

 

Objective 1. Identify deficiencies within current wound progress tracking methods. The main 

deficiency is the lack of accurate clinical assessment tools. 

 

Objective 2. Identify input parameters 

Working with physicians at various wound care clinics, we identified potential input 

parameters for wound characterization. The common criteria for the input parameters are 

that they are measured using noninvasive methods and technologies. The objective is to 

determine the most efficient, effective combination of inputs to produce a reliable and 

useful output. 

 

These parameters include but are not limited to [49]: 

• Moisture content: In a wound that is too wet or too dry, moisture facilitates bacterial 

growth. It is possible to include this parameter quantitatively. 

• Necrotic (dead) tissue: the measure of necrotic tissue in a wound bed 

• Wound depth/depth of tissue damage: There is always the possibility that a wound has 

“dead space” that must be harnessed and “filled.” 

• Size (length by width by depth) 

• Periwound skin (skin around the wound): The condition of the periwound skin around 

the wound directly affects wound healing. 

• Wound margin or edges 

• Wound odor: It is unknown whether the wound odor is a quantifiable value but is 

something to consider. 

 

By correctly identifying the underlying etiology and respective parameters of the wound, we can 

develop a better baseline for the development of the predictive algorithms. 

 

Objective 3. Development of Predictive Algorithms  
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 These algorithms are based on robust predictive methods, such as regression 

 analysis, neural networks, and survival statistics. 

 

Objective 4. Modeling a Wound 

With accurate and reliable data, three-dimensional wound modeling is a possible 

incorporation into the overall system. We will produce a three-dimensional model of the 

shape and volume of a wound to provide an accurate representation of the current stage of 

the wound. 

 

Objective 5. Data Analysis 

The data analysis includes a comprehensive understanding and development of the 

predictive algorithms. We determine through the data analysis the robustness and 

accuracy of each of the modeling techniques. 

 

The overall goals of this dissertation is to design a methodology that standardizes assessment of 

wound with three main focus points: 1) develop a methodology to predict model prototype to 

estimate wound healing time; 2) support the predictive algorithm with a three-dimensional wound 

model; and 3) recommend adaptations to the model prototype, including parameters, such as 

patient characteristics and risk factors, that are known to be associated with wound healing. We 

hope the model will provide the initial framework and support for continued research in developing 

a more comprehensive predictive modeling system that can lead to a standard approach to the 

routine management of chronic wounds. 

11.6  DISSERTATION CONTRIBUTION 

The primary contribution of this dissertation is the development of predictive models and 

algorithms to estimate the time to heal of chronic, lower appendage wounds. This contribution 

consists of three components: predictive algorithms, the system components, and the overall 

methodology.  

 

Predictive algorithms are the developments of a mathematical formulation that uses a combination 

of specific wound characteristics to predict the number of weeks left to heal. The importance of 

each wound characteristic is determined through statistical analysis. More specifically, the 

significance of each wound characteristic input is determined through the correlation between 

each wound characteristic input, as well as each input with the output. Various correlation metrics 



www.manaraa.com

 

 10 

determine each wound characteristic inputs’ importance. Figure 1.1 shows a basic overview of the 

respective input/output diagram. 

 

There are three components of Figure 1.1: the inputs, the algorithm, and the output that have a 

unique contribution to the overall predictive model. The inputs were chosen based on a series of 

statistical analysis and statistical correlations that determine the ideal set of inputs for the predictive 

algorithm. Based on the analysis, we determine the archetype set of inputs for each of the 

predictive algorithms: regression and neural networks. Similarly, within the predictive algorithms,

we contribute two algorithm analyses to compare their accuracy and robustness. Last, the output 

contribution will be twofold: 1) Primary output will be the predictive quantitative value of the time left 

to heal for a wound; and 2) A three-dimensional model of the wound shape and depth. The three-

dimensional model of the wound will provide the ability to view and track the change in volume of 

the wound.  

 

 

FIGURE 1.1: INPUT – ANALYSIS - OUTPUT 

 

The quantitative value of time to heal is the primary contribution of this dissertation. However, the 

secondary contributions add complementary value to this overall research. The second 

complementary contributions to this research are the development of three-dimensional models of 

chronic wounds and overall methodology that includes image analysis and routine chronic wound 

management analysis. Three-dimensional virtual modeling is used primarily in product design and 
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development to prevent unnecessary prototype creations due to minor changes. Recently, three-

dimensional modeling has become more mainstream in medical devices. However, in many past 

publications for chronic wound modeling, three-dimensional modeling does not provide a true 

three-dimensional model, as we show in Chapter 2.  

 

Three-dimensional modeling is heavily used in other areas of medical imaging, such as cancer and 

tumor detection, but is rare in wound care and assessment. Three-dimensional modeling provides 

the methodology with the ability to track the changes in the surface area of the wound and the 

subtle changes in the volume of the wound below the surface. The changes in volumetric data will 

contribute to the knowledge that understanding and tracking the volume will assist in 

understanding how the wound is healing. 

 

Part of understanding and appropriately using three-dimensional modeling for chronic wounds also 

includes gaining the necessary information to input accurate data into a three-dimensional 

modeling system. Our contribution also includes the imaging component of the overall system, 

which integrates still and thermal imaging over a length of time. These images provide us with the 

ability to photograph the wound with a ruler, trace the spline of the wound, and import that data 

into the three-dimensional modeling program. In this research, we use Solidworks™ as the three-

dimensional modeling program, thus allowing us to accurately determine the perimeter of the 

wound. By using computerized planimetry, we are able to more accurately define the wound 

perimeter without human measurement and ultimately construct a virtual model the wound. 

Similarly, thermography provides us with the respective temperature difference between the wound 

and the surrounding skin to monitor how wound healing impacts the temperature of the wound. 

 

The third contribution of this dissertation research is the development of recommendations of 

routine chronic wound management for wound clinics. This is based on the observations at wound 

clinics that range from community to large teaching facilities. We have spent significant time in 

various wound clinics and wound treatment centers observing, recording, and analyzing the 

individual treatment of patients and their wounds.  

 

Routine medical practice has long had a varying definition of “standard.”  As common with any 

industry with multiple entities, each entity defines its standards and expectations according to what 

it believes are the needs and wants of its customers  that is, the patients. This research on 

developing a predictive wound care assessment methodology and system has extended a branch 

of inquiry into the routine care of wound clinics. Through the research for the predictive model 
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systems development, we noticed among between all the clinics that were visited. The scope of 

this inquiry evaluates the observed wound care practice and routine wound care treatment. The 

purpose of this inquiry is to determine whether a common practice can be developed to better 

streamline chronic wound care, regardless of the type and size of the hospital. The purpose of this 

contribution is to compare and contrast the clinic practices, tools, and resources at various 

community and teaching hospitals. This exploration determines a proposed combination of tools 

and technique that could be most beneficial to patient wound care. This contribution focuses on 

three wound care clinics, a major teaching hospital, a midsized teaching hospital, and a community 

hospital, and a wound care provider, each with its own methods of patient wound care. On that 

basis, we provide recommendations of “Routine chronic wound management from an engineering 

perspective, which is based on the observation and interactions with these hospitals. 
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2 CHAPTER 2 LITERATURE REVIEW 

CHAPTER TWO 
Literature Review 

22.1  INTRODUCTION 

The underlying pathophysiology, which drives the development of chronic wounds, is still poorly 

understood [50]. The ability to measure wound progression is critical to the healing of wounds. 

Wounds either progress in healing or deteriorate in health; the health of wounds rarely remains the 

same. A wound bed that stagnates is generally the same as medical treatment that is not effective 

in treatment. Proper tools for measuring the effect of an intervention are critical to properly healing 

the wound. There has been recent progress in modeling and evaluating wounds [22]. Wounds are 

most prevalent in elders. However, as the population becomes more active, people must take 

more precautions to prevent wounds. The analysis of the geometric and chromatic parameters of a 

wound is the most crucial and accurate way to evaluate a diabetic wound [22]. No currently 

available technologies integrate all peculiarities and issues pertaining to a pressure wound [22]. 

Researchers and supporting clinicians have combined geometrical, thermal, and chromatic data 

capture using three-dimensional optical scanners and computer-vision techniques. 

 

Innovative research has defined a robust segmenting tool that enables discrimination of wounds to 

accurately classify legions at different stages using textual information [22]. Two-dimensional 

processes lack the detail of wounds larger than 1 to 2 microns, as well as the necessary 

information of a wound [22]. The newest technologies have attempted to automatically detect a 

wound edge by analyzing curvature maps [51]. Because the topology of each wound varies so 

significantly, tracing methods must be tremendously adaptable. Current tracing methods are 

inaccurate and unreliable for wounds that exceed a certain depth. Noninvasive, full-field 

technologies are necessary to effectively measure and assess the severity of a wound. The grand 

challenge is to integrate image acquisition and computer vision to monitor the wound with respect 

to area, volume, color, and temperature without physical contact with the patient [22]. Currently, 
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the development and analysis of this research is performed using off-the-shelf cameras and 

equipment. The goal of our research is that the methodology we have developed will be the 

foundation in pursuing a full-field, practicum-enabled wound assessment core technology that can 

be integrated in current wound care clinics.  

22.2  WOUND TOPOLOGY MODELING 

In most wound clinics, wound progression is monitored by charts, diagrams, and measurements. 

Some wound clinics have standard protocols to photograph the wound during each visit. 

However, this practice is not standard across all wound clinics. Despite good wound tracking 

procedures, wound monitoring, in general, concentrates on the surface measurements of the 

wound. This study, however, also supports the ability to take those surface measurements and 

measured depth to create a three-dimensional model of a wound. A three-dimensional model of 

the wound allows more accurate calculation and monitoring of wound health using the volume of 

the wound rather than just the surface area. Figure 2.1 is an example of the wound shape, 

dimensions, and depth based on dimensions from a patient wound.  

 

   

FIGURE 2.1: EXAMPLE OF WOUND MODELING IN SOLIDWORKS™ SOFTWARE 

  

22.3  PREVIOUS STUDIES: A REVIEW OF WOUND ASSESSMENT TECHNIQUES 

Previous research is and has continually performed in the area of reducing the healing time of 

chronic wounds in patients. Still, most previous research converges on using the surface of the 

wounds rather than the underlying geometry of chronic wound development [52]. These 

methodologies can be classified in terms of the measurement process, the measurement 

techniques, and the completeness of the data [22, 52]. These systems include traditional imaging 

techniques, including point-and-shoot digital cameras, and range to stereophotographic systems, 

which use two cameras to create depth perception to calculate and create a three-dimensional 

map of the wound surface [22, 52]. Despite these imaging advances, most previous research lacks 
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the ability of a comprehensive chronic wound assessment system that enables real-time tracking 

and prediction of wound progress. In most cases, the performance of previous wound 

assessments are fragmented, focusing on one aspect of chronic wound assessment. 

 

The University of Pisa in Pisa, Italy, conducted one study on chronic wound assessment that used 

three-dimensional optical imaging based on integrating geometrical, chromatic, and thermal data 

[22]. This study focused on the development of a noninvasive system to automatically measure 

chronic wounds, with little human intervention or assistance. By analyzing both the visible and the 

thermal imaging data, Barone et al. [22] hypothesized that their imaging system can determine the 

size, shape, and depth of ulcers on human legs. 

 

Barone et al. [22] determined that clinical treatments should be validated through constant and 

consistent monitoring of the progression of wound size and wound healing. Previous research 

supports the claims of Barone et al. [22] that ischemic wounds present a lower temperature than 

core body temperature. This discrepancy could indicate healing or nonhealing. This discrepancy 

would be similar to biological characteristics, such as a change in blood flow, an increase or a 

decrease in oxygen, or a regrowth of skin [53-55]. The study of Barone et al. [22] focuses on a 

noninvasive wound assessment method that monitors the healing process using three types of 

surface data: geometrical, thermal, and chromatic data. Their research uses a three-dimensional 

optical scanner and an infrared (IR) detector to capture the color and thermal images of the 

wounds. 

 

In short, Barone et al. [22] created an optical configuration that recorded three-dimensional images 

based on image configuration. This optical configuration was composed of a color digital video 

camera, a digital thermal video camera, and a standard video projector. The three cameras were 

mounted at three slightly different perspectives to provide the “depth,” which is similar to a stereo 

camera. To acquire accurate data, this study used light plane projects to obtain the shape 

measurements. The light plane projects provided a sequence of images that represented parallel 

vertical light planes. This study generated three-dimensional chromatic and thermal representations 

of the wound by automatically mapping the visible and infrared images onto three-dimensional 

geometries generated by the scanning process. This information allowed researchers to view the 

three-dimensional coordinates of the points on the vertically projected lines. This research 

produced success in the detection of wound regions and computing their relative areas and 

volumes. The accuracy of this study was tested by measuring the shape of a reference object of 

known dimensions. The precision was evaluated by comparing the point clouds of single scans 
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that corresponded to best-fit surfaces. Figure 2.2 is an example of results observed by Barone et 

al. [22]; they present results of a singular wound acquired from each imaging modality. This study 

provided validation in the need for more comprehensive wound care systems. This study had a few 

limitations: 1) the complexity of calibration and integration of the three cameras; 2) a three-

dimensional mesh surface contains very little depth along the Z-axis; and 3) the cost effectiveness 

of the technique in clinical practice. 

 

Despite the limitations of the study of Barone et al. [22], their research validated the need for better 

chronic wound assessment systems. Furthermore, this study was among the first studies to use 

three-dimensional imaging to create a three-dimensional map of the wound’s surface. What 

differentiates the study by Barone et al. [22] from the previous studies is its ability to use geometric 

and thermal imaging data in addition to chromatic data. Most of the previous methodologies and 

acquisition systems support only chromatic data. Additionally, most previous systems are 

considered strictly two-dimensional systems without any possibility of collecting and tracking the 

volume of the chronic wound.  

 

 

 

(a) three-dimensional geometrical wound model, (b) three-dimensional colour texture map,  

(c) three-dimensional thermal map 

 

(d) three-dimensional segmented data using wound detection on the chromatic image 

(e) three-dimensional segmented data using wound detection on the thermal image 

 

FIGURE 2.2: BARONE ET AL. WOUND IMAGES FROM DIFFERENT IMAGING MODALITIES [22] 
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In 2008, the University of Pennsylvania School of Medicine published a review article on current 

methodologies of wound care assessment. The article reviewed the techniques for measuring and 

documenting wound geometries with an emphasis on multidimensional computerized wound 

documentation [52]. The prominence of this article focused on more computerized wound 

documenting systems rather than typical length and width measurements. 

 

Computerized wound-documenting systems are rare, and the techniques have yet to be 

standardized. Various methods exist to trace, calculate, and record the two-dimensional surface 

measurements. Chapter 4 discusses the most common of these methods. The details extracted 

from this article focus on the three-dimensional assessment because wound volume is the most 

frequently reported desired metric.  

 

Ultrasound sonography provides a visualization and quantitative assessment of deeper imaging 

modalities below the epidermis, dermis, and hypodermis layers and allows clinicians to view into 

the muscle, should a wound penetrate that far. Similar to the surface approximation of two-

dimensional wound measurements, wound volume measurements involve some limitations.  

 

For many current wound volumetric measurement techniques, the initial three-dimensional shape 

of the lesion is approximated based on known, typical geometric shapes, such as rectangles, 

spheres, and domes [52]. For example, if a wound shape is approximated to be similar to a 

rectangular parallelepiped, the volume is: 

 

 (2.1) 

 

versus a spheroid 

 

 

 (2.2) 

 

Many similar studies have reported methods to approximate the volume of a wound and the 

approximation with traditional geometric shapes with three degrees of freedom [52]. For similar 

studies, researchers have typically used some type of approximation for the footprint of the wound, 

relying on already known objective measurements (Figure 2.3). Although this technique is sufficient, 

the method is both inaccurate and unreliable in determining the change in surface area and depth.  
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FIGURE 2.3: APPROXIMATE GEOMETRIC SHAPE ESTIMATIONS OF WOUNDS [52]. 

 

Similarly, other studies have showed that the combination of standard photography, transparency 

tracing, and video camera recording produce acceptable results of diabetic wounds and venous 

ulcers [44]. Combining these techniques still yields inaccurate results for estimating healing rates. 

Mayrovitz et al. [44] used the ratio of the surface area of a wound (S) to its perimeter (P) to 

characterize healing rates. The study [44] has provided an effective ratio to assess healing rates in 

venous ulcers and a suitable indicator of linear healing rate per day. It has also been used to 

predict time to wound closure based on nonlinear delayed exponential models that offer some 

predictive capabilities but have not been verified.  

 

The Mayrovitz et al. [44] model developed a study consisting of 20 nursing students using six test 

images of various wounds. Using provided images, students were required to determine the actual 

areas, the weight  of each target, and the weight  of the cutout square of each target 

shape to compare it with a computer-generated and computer-drawn square of known area . 

The area  was determined by 

 

 

 

(2.3) 

For this study, students were required to measure and calibrate the imaging device to the wound 

and trace the wound three times in succession using a mouse. The purpose of multiple tracing 

was to obtain a perimeter calibration factor to use for obtaining the area and perimeter. 

Researchers used a standard error equation to determine the accuracy and reliability of their 

results: 

 

 

 
(2.4) 
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The area planimetry was determined through the average of the three tracings for each image. 

Overall, this study supported the hypothesis that the characterization of wound shapes is possible, 

but accuracy and reliability are questionable based on the techniques used. Mayrovitz et al. [44] 

found that the standard consensus of estimating the correct weight-determined area among other 

factors could contribute to the inconsistent measurements. Furthermore, the results were heavily 

dependent on the student measurement process, image calibration, and the identification of 

wound margins. The repeatability proved to be challenging. However, this study does support the 

desire to use software algorithms to determine the perimeter of chronic wounds. The study also 

suggests that further research and further training of wound care specialists can successfully use 

computerized planimetry of digitized wound photographs to determine wound surface area.  

22.4  NONINVASIVE WOUND MEASUREMENT TECHNIQUES 

There are currently only a handful of noninvasive wound measurement techniques in both research 

and clinical practice [22, 38, 56, 57]. These methods include a variety of techniques, but the most 

prevalent are forms of imaging, laser, and light refraction. In Chapter 4, we will discuss the four 

most common methods. including curvature-map-based method, three-dimensional construction, 

digital construction, and a few currently available commercial systems. 

 

St-Supery et al. [33] developed a review article that questioned whether an ideal methodology for 

tracking chronic wounds exist. They discovered a series of methods organized into one-, two-, and 

three-dimensional techniques. Table 2.1 [33] shows modified results from St. Supery et al. [33] to 

show only the noninvasive techniques of wound assessment. Chapter 4 will discuss in more detail 

the primary and current methodologies used in current chronic wound care management4. 

2.5  SUMMARY 

We have explored various methods of measuring the surface area and volume of chronic wounds. 

By fully understanding past research, we can determine the niche of chronic wound measurement 

techniques. St-Supery et al. [33] is the most similar study we have found that uses both 

thermography and three-dimensional modeling to reconstruct the behavior and topology of a 

chronic wound. However, as Figure 2.2 shows, their techniques involved more inverted models of 

the wound by creating a negative impression. The methodology uses the surface area shape with 

the corresponding depth measurements to create a positive three-dimensional model.  
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Additionally, the planimetry of digitized wound photographs and approximate geometric shapes 

(Figure 2.3) allows clinicians to estimate wound shape in real time. We believe that, with the decline 

of cost for digital cameras, digital photography, and the storage of medical record photography, 

the consistency of photographing wounds should become more standard. Wound surface area 

should grow beyond the approximate bounding box. 

 

Table 2.1 is a compressive summary that we have determined from literature that summarizes two- 

and three-dimensional chronic wound measurements. However, most of the methods have 

significant limitation in determining irregularly shaped wounds. We believe the methodology, when 

refined, could eliminate some human variation in measurements and discrepancy between 

measurements. This elimination would allow for additional accurate tracking of wound surface size 

using digital planimetry. 
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TABLE 2.1: SUMMARY OF ONE-, TWO-, AND THREE-DIMENSIONAL MEASUREMENT ASSESSMENT TECHNIQUES [33] 

Degree of 
Freedom 

Methodologies Descriptions Advantages Limitations 

One-
dimensional 

Perimeter Measured directly on wound, 
on acetate tracings, or on 
photography tracings 

Sensitive to wound 
contour variations 

Measure is taken on wound edges, which are often 
hard to delimitate precisely 
 
Highly observer dependent 

Two-
dimensional 

Linear measurements Calculation using width (W) 
and length (L) measures 
 
Wound approximated by 
regular geometric shapes 
 
Rectangle: W x L 
Ellipse: W x L /4 

Simple and quick 
No special material 
needed 
Convenient 
Cheap 

Approximation of wound size using regular 
geometric shapes 
Many widths and lengths possible on a single wound 
Not sensitive to all shape variations 

Two-
dimensional 

Direct manual 
planimetry 

Wound contour traced on an 
acetate 
 
Squares within contour 
counted manually 
Inclusion of squares over-
crossing wound boundaries is 
variable 

No need for an 
approximation by 
geometric shapes 
 
No expensive material 
needed 
 
Simple 

Squares crossing boundaries are source of error 
 
Square counting is time consuming 
 
Exudate can blur wound edges 
 
Contact with wound needed 

 
Two-
dimensional 

 
Direct digital 
planimetry 

 
Wound contour retraced on 
digital tablet 
 
Software calculates area 

 
No ambiguity with 
crossing squares 
 
No tabulation errors 
possible 
 
Simple and quick 

 
Problematic when wound is bigger than the tablet 
 
Contact with wound needed 
 
Exudate can blur wound edges 
 
Expensive 

Two-
dimensional 

Manual or digital 
planimetry on photos 

Full-scale wound images 
taken 
 
Wound contour retraced on an 
acetate or on a digital tablet 

No direct contact with 
wound needed 
 
No blurring of wound 
edges by exudate 

Wound edges less clear on a photo 
 
Curved surface distorted on photo which leads to 
underestimation of real area 
 
Problematic when wound is bigger than the photo 
Images calibration is time consuming and a source 
of error 

Three-
dimensional 

Linear measures Width (W), length (L) and 
depth (D) measures 
 
Volume approximation by 
regular geometric shape 
formula 
Parallelepiped: W x L x D 
Spheroid: (W x L x D)/6) 

Simple and quick 

 
Low cost 
 
No special material 

needed 

Approximation of wound size using regular 
geometric shapes 
 
Not sensitive to shape variation outside the 
measured axes 
 

Undefined wound edges and wound base 
irregularities can affect the measure 
 
Deep sinuses skew the results 

Three-
dimensional 

Barber Measuring 
Tool 

Software calculates volume 
from linear measurements 
 

Shows % of volume variation 
and its graphic representation 

No tabulation errors 
possible 
Data storage 

Simple and quick 
Calculates volume 
variation as a percent of 
baseline 

Errors due to manual measures are present 
 
One formula for all wound shape 
Deep sinuses skew the results 

Three-
dimensional 

Kundin Three calibrated perpendicular 
axes reproducing the 
Cartesian system 
 
Width, length, and depth 
measures in a formulas: 
W x L x D _ 0.327 
 
Area measurement also 
possible: W x L x 0.785 

Simple 
 
Low cost 

 
Disposable 
 

Overcomes the variation 
due to ruler positioning 
 

Portable 

Approximation of irregularly shaped wound volume 
or area with only one formula 
 
Not sensitive to shape variation occurring outside 
the measured axes 
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3 CHAPTER 3 CHRONIC WOUNDS 

CHAPTER THREE 
Chronic Wounds 

 

Two primary, outermost layers of the skin protect the human body. The outermost layer is the 

epidermis (75 to 150 microns thick), and the innermost layer is the dermis. The two layers are 

separated by the basement membrane [2]. When human skin is broken by anything form a small 

cut to a traumatic wound, the normal regenerative healing process allows new skin to grow over 

the damaged area. Unfortunately, those who suffer from chronic wounds lack the ability to properly 

heal.  

33.1  BIOLOGY OF A WOUND 

Wounds occur in all shapes and sizes. Clinicians often need to try multiple treatment options to 

determine the most effective one for a wound [24]. Wounds are typically defined as disruptions to 

the integrity of the skin. Simple wounds are those that remove or damage the first layers of skin. A 

complex wound is deeper, often causing injury to nerves, blood vessels, or muscles [24]. The 

underlying pathology of a wound determines the approximate treatment route; however, the 

primary goal of wound management is rapid wound closure [24]. 

 

Pressure wounds impact the deeper tissues of a patient and are due to unrelieved pressure, shear 

forces, frictional forces, or a combination of these factors [58]. The susceptibility of a person for a 

pressure wound depends on a number of internal and external factors [16]. It is, however, generally 

agreed that the accumulation of bacteria and bacteria colonization contribute to the tissue 

breakdown and delay of healing [58-60]. Bacteria, although it typically prolongs healing, can 

provide information on how well a wound is healing [58]. For many clinicians, the diagnosis of 

wound health and eventual wound treatment depends on the diet of the patient and the nutrients 

the patient commonly consumes. There also could be a discrepancy  in the thickening of skin and 
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bone changes in the feet. Known wound factors include ischemia, or the restriction of blood 

supply; perfusion; oximetry, or the oxygenation of hemoglobin; and hardening of the surrounding 

skin. 

 

According to biology literature, impaired blood supply and tissue malnutrition cause wounds [16]. 

The combination of prolonged pressure and tissue compression can lead to capillary bed 

occlusion and local ischemia, contributing to the rate of cell death [16]. People can sustain, 

decubitus, or “lying-down,” wounds in any part of the body in which pressure and compressive 

forces continue for a prolonged period [16]. Areas of the body that are more easily susceptible to 

decubitus wounds are the heels, sacrum, occiput, helices, elbows, and lower extremities [16]. The 

morphology of wounds occurs when the subcutaneous tissue breaks down. Epidermal necrosis 

occurs later during morphology because epidermal cells can withstand a lack of oxygen for a 

longer period. The prolonged absence of oxygen often contributes to pressure wound morphology 

[16]. Various classification systems exist for decubitus wounds, such as the National Pressure 

Ulcer Advisory Panel (NPUAP), the most widely accepted system.  

 

The NPUAP has four stages of classification for pressure wounds [61]: Stage 1, nonblanchable 

erythema; Stage 2, partial thickness loss of dermis, Stage 3, full thickness skin loss; and Stage 4, 

full thickness tissue loss with exposed bone, tendon, or muscle. 

Wound management is a multidisciplinary concern, but nurses primarily care for and manage 

wounds [62]. Wound management should not be treated in isolation but should be considered in 

respect to the body of each patient [62]. In many cases, assessment of the wound area is the 

responsibility of both the patient and the clinician, and regular intervals of wound assessment is 

generally important during the healing process [62]. According to literature, wound care is dynamic, 

and the assessment, treatment, and wound progression is vital. Once a wound has formed, key 

aspects of wound management, such as cleaning, effective drainage, and absorption [16], are 

necessary to ensure effective healing. A typical path of treatment of pressure wounds is common 

across all wounds. They are dependent upon four primary modalities [16]: 

• Pressure reduction and prevention of additional ulcers, 

• Wound management, 

• Surgical intervention, and 

• Nutrition. 

 

Few diseases exist for which so many treatments have been attempted as there have been for 

wounds. Treatment attempts include various chemicals, poultices of vegetables, enzymes, 
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vitamins, cod-liver oil, dried blood plasma, various precious and nonprecious metals, sugar, and 

salt [16, 63]. Mechanical treatments include electric lamps, ultraviolet light, hyperbaric oxygen, 

rubber rings, sawdust beds, and a variety of pressure beds and padding [16, 63]. 

33.2  WOUND HEALING 

Wound healing is a complex biological process that differs with every patient. Many factors 

contribute to the health and healing rate of a wound, and we thus focus only on the basics of 

wound healing and major procedures in clinical practices [64-66]. Chronic wounds stem from an 

inability of the body to heal a damaged area. As expected, each wound is unique, which causes 

wound assessment to be nonstandard. Common procedures for each patient occur in wound 

clinics, but the course of treatment is extremely customized. Major systemic parameters, such as 

blood pressure, temperature, and pulse rate, affect wound healing [3]. According to literature [66], 

wounds [in general] have been relegated either undeserving or too difficult to measure.”  

 

The wound healing phenomenon comprises multiple processes. all of which must function in 

perfect harmony to properly and fully work [67]. The biological aspects of wound healing occur in 

most wound repair and include inflammation; epithelization, or the formation of new skin; 

angiogenesis, or the formation of new blood vessels; granulation, or the formation of connective 

tissue; and tissue formation [3, 67]. The difficulty in accurately measuring wound healing is the 

unknown information that is occurring but unseen at the surface of the wound. For example, the 

healing of pressure ulcers has previously been linked to angiogenesis and the deposition of 

extracellular matrix; this situation ultimately leads to the wound’s filling up with new tissue and 

contracting over time [3, 67]. In particular, pressure wound healing consists mostly of new tissue 

formation and contraction of the skin. Epithelization is especially important in wound healing and 

involves four stages: keratinocyte, proliferation, migration, and differentiation. These stages allow 

for new epithelials to make their way across the surface of the wound. These stages make it 

cumbersome to accurately measure wound depth. Further, techniques that work in exploratory 

research do not necessarily work in practice. Unfortunately, new skin growth causes more 

uncertainty in the accurate measurement of wound depth because the reliability of the 

measurements have yet to be established. 

 

A significant amount of progress in understanding wound healing and wound anatomy has 

occurred in the past century [68]. Wound healing has traditionally been divided into four distinct 

and sometimes overlapping phases: exudative, resorptive, proliferative, and regenerative [68]. 

Some discussion has occurred on whether wound healing is a three- or a four-phase process. But, 
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given the consequences of unpredictable wound healing, most literature states that a four-phase 

process is more accurate [68]. During the exudative phase, a visible clot forms. The resorpitive 

phase occurs 24 to 48 hours after the wound has formed. Macrophages migrate toward the 

wound, causing visible inflammation. The proliferative phase typically occurs between the third and 

the seventh day of healing. During this phase, the body forms granulation tissue, new epidermal 

cells begin to grow, and a visible delicate border around the wound begins to form [68]. During the 

regenerative phase, which can last more than a year, maturation of collagen occurs, reinforcing the 

resistance of the wound to future damage [68]. Regardless of the complexity of the wound, if the 

skin integument becomes damaged, bleeding and coagulation is inevitable [68]. Figure 3.1 and 

Figure 3.2 represent two of the four stages through of a wound healing in its third day and third to 

seventh days, respectively.  

 

 
(Third day) (Kujath and Michelsen 2008) 

 
(Third to seventh days) (Kujath and Michelsen 2008) 

  

FIGURE 3.1: EARLY PHASE OF WOUND HEALING  

 

FIGURE 3.2: EARLY PHASE OF WOUND HEALING  

 

Although we cannot understand all the parameters and factors that contribute to the “normal” 

wound healing process, we are certain that particular physiological parameters, such as oxygen 

perfusion and tissue bacteria levels, influence the microenvironment of the wound bed. 

Nonetheless, there is only so much time per patient, and a battery of tests cannot be conducted in 

every patient visit. At best, clinicians take wound measurements; perform debridement of the 

wound bed, depending on the severity of the wound; and judge the health of the wound bed to 

assess the extent of healing compared with its condition during the patient’s previous visit. 

33.3  WOUND CLASSIFICATIONS 

There are two categories of wound classification: partial and full thickness and acute or chronic 

wounds. Partial- and full-thickness wounds infer a partial or full loss of the epidermis and dermis. 
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Full-thickness wounds frequently involve a loss of deeper tissue layers, including subcutaneous 

tissue, muscle, and bone [2]. Figure 3.3 shows a schematic diagram of the anatomy of the skin, 

showing the depths of penetration of human skin and tissue when a wound occurs. Surgery or 

trauma typically causes acute and chronic wounds. Acute wounds are unexpected, sudden 

wounds [2]. Chronic (acute) wounds fail to follow the expected wound healing process. In many 

instances, other issues, such as vascular compromise and imbalances in the body, including those 

that diabetes creates, perpetuate chronic wounds [2, 69, 70].  

 

 

FIGURE 3.3: SCHEMATIC DIAGRAM OF ANATOMY OF SKIN [2, 71] 

33.4  CHRONIC WOUNDS ON LOWER APPENDAGES 

Chronic wounds on the lower appendages account for 70% of most wounds at typical wound 

clinics [72]. They fail to heal in a timely manner. Prolonged inflammation, failure to epithelialize, and 

defective reconstruction of the extracellular matrix typically cause chronic and nonhealing wounds 

[73]. They are most often associated with abnormal wound odor, inability to properly drain, and 

patient discomfort [73]. Furthermore, chronic wounds that occur on the lower appendages 

historically are more slower to heal because of their location on the body. Lower appendages are 
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the last to receive circulation, to receive oxygen, and to receive nutrients. The circulatory system 

cycles from top to bottom, which inherently causes the lower appendages, including the, calves, 

feet, and toes, to bear the constant forces and pressures of walking.  

 

Patients develop chronic, nonhealing wounds for many reasons. For many patients, their body 

lacks proper blood circulation; without adequate blood supply to an injured area, healing becomes 

more difficult. Similarly, blood pressure, blood flow, pulse volume, capillary perfusion, and the 

amount of oxygen near a wound are also wound healing indicators. These indicators are especially 

important for lower appendage wounds because the lower legs, feet, and toes are the last to 

receive circulation.  

 

Particular characteristics are attributed to the development of chronic wounds. For example, they 

generally have a prolonged inflammatory phase and deficiency of growth factor receptor sites [2]. 

Additionally, many chronic wounds do not have an initial bleeding event. This initial bleeding is 

significant in the process of wound healing because it triggers fibrin production and the release of 

growth factors. What is more, individuals who develop chronic wounds have a high level of 

proteases. However, the greater biological impact on individuals with chronic wounds is the 

deficiency of growth factor receptor sites and cellular senescence  a decrease in proliferative 

potential and the loss of ability to respond to growth factors, typically in elderly patients [2]. 

33.5  WOUND TREATMENTS 

The treatment of chronic wounds is important because proper treatment affects the length of time 

to heal. Although understanding various wound treatments is important, we will detail only a few of 

the most common treatments. The predictive model does not directly take into account the 

treatments between each visit. Therefore, we do not provide substantial detail pertaining to various 

treatments. However, it is important to document the most common chronic wound treatments. 

 

One type of treatment is a three-layer high-compression system, which 3M developed. The use of 

a Class 3, high-compression system is common in lower extremity chronic wounds specific to 

patients with venous and arterial diseases [74]. Compression of the wound works in much the 

same way as stitches work. When a wound is compressed, the epidermis and dermis layers of the 

skin that comprise the wound perimeter squeeze together in an attempt to stimulate skin growth. 

For many patients with venous disease and venous hypertension, some degree of compression 

should continuously be used [74]. 
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For diabetic wounds, treatments involve more maintenance of the wound from infection. The 

second type of treatment involves the use of topical antimicrobials that can be effective in healing 

chronic wounds. However, diabetic wounds are more prone to infection. As a result, the most 

common treatment for these wounds is the use of antibiotics. Neuropathy, or nerve damage, is 

among the most common problems that individuals with diabetes experience. Neuropathy causes 

a lack of feeling in the damaged nerve endings, which are typically in the lower appendages. This 

lack of feeling results in the development of wounds. 

 

The balance of moisture and good bacteria to heal a chronic wound is the third type of treatment. 

This balance is a key component in the success or failure of the wound healing process. Various 

types of dressings for chronic wounds can have a great impact on wound healing. Various types of 

dressings maintain certain levels of moisture in the wound healing environment. Similarly, different 

types of wound dressing manage and protect periwound skin [74]. Clinicians look for wound 

dressings that maintain their position on the body, minimize shear and friction, and do not 

contribute to additional tissue damage [74]. 

33.6  ISSUES IN WOUND CARE CLINICAL PRACTICE 

Many influences affect the efficiency of the heavily regulated healthcare industry. Limited federal 

and state regulations exist to control the quality of wound care clinics, which must comply not only 

with federal and state regulations, but also with insurance companies and payment regulations to 

receive reimbursement for their services. Figure 3.4 provides an overview of the “Wound Care 

Diagnostic Triangle Dilemma,” in which all wound clinics try to balance fast wound healing, the 

quality of wound care, and reimbursement. 

 

In the medical industry, a number of components are involved in the quality of patient care. These 

components include not only well-educated and trained physicians but also procedures, tests, 

reimbursements, financial management. The diagnostics of a wound are challenging because each 

procedure on a wound needs to be reimbursed somewhere down the treatment pipeline. If a nurse 

underestimates the size of a wound or the length of treatment, the institution loses money. 

However, if a nurse overestimates the size of a wound, insurance companies can question 

documentation, records, and procedures. These situations occur because centers receive part of 

their reimbursements based on their measurements and outcomes. In essence, wound state 

determination is a triangle of conflicting obligations, with medical insurance companies on one side, 

quality of wound care on another side, and determination of would depth and shape on the third. 

Figure 3.4 shows an explanation behind the three thematic sides of the triangle. 
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The quality of patient wound care should be the first and foremost concern of wound care facilities. 

However, with any situation, we question the right balance of care, cost, and reimbursement. One 

of the major issues between wound assessment and medical insurance is the process of wound 

measurement. The double-edged sword is that wound measurements are prone to human 

inconsistencies but insurance companies reimburse on the accuracy and size of the surface area. 

Unless an improved imaging device with a built-in measurement system becomes standard in 

wound clinics, measurement variability is unavoidable.  
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Even with improved technology, we discovered that not every wound clinic uses photographic 

evidence to document the progress of wound healing. Photography of wounds is a basic, simple, 

and logical assessment technique that should be common across all wound clinics. Unfortunately, 

we have observed that photographing wounds is not routine. 

 

The previously mentioned issue has been discussed with various practicing clinicians. Those who 

do photograph patient wounds to follow their progress, reason that Medicare and Medicaid require 

photographic evidence for reimbursement. Those facilities that do not photograph on a regular 

basis have various reasons for not doing so. Some facilities state that photographic evidence is 

unnecessary to judge the health of the wound. Other facilities submitting the photographs with the 

insurance claim puts them in the hands of inexperienced, nonexpert wound care specialists  

insurance agents. Further, nonspecific-wound care clinicians may judge photographs by deeming 

wounds as not healed when in fact they are looking at photos of healthy wound beds. Similarly, 

wound care treatment is a delicate process, and the body sometimes requires stimulation to 

facilitate wound healing. In many instances, the necessary treatment of a wound is to increase its 

size to promote healing because of the patient’s healing trajectory.  

 

With the implementation and initiative of electronic medical record systems across all wound 

clinics, a discrepancy exists between a general EMR system and a wound care-specific (electronic 

medical records) EMR system. Figure 3.5 displays the overall general patient wound care 

procedure. In Figure 3.5, the last three steps illustrate what occurs during a small window of time 

between patients when the nurses input their notes into the EMR system. If nurses do not input 

their notes during this small time window, a backlog of paperwork occurs. The nurses have 

approximately five minutes to input their assessments before retrieving the next patient. For those 

clinics that see approximately 30 to 40 patients a day, time is critical for maintaining on-time patient 

satisfaction. There were many instances in which we observed the nurses waiting 30 to 60 

seconds for the system to load the appropriate patient page. Although this amount of time is 

insignificant in many situations, for operational efficiency of a wound clinic, such a system wastes 

time and tests patient satisfaction. 
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FIGURE 3.5: SUMMARY OF RBMC PATIENT PROCEDURE

  

Similarly, additional unpredicted and unforeseen factors may appear, including training and 

retraining the staff to use the selected EMR system. Many physicians and nurses work at a 

collection of hospitals and facilities. Each facility has a different EMR system that physicians — 

some of whom travel to three or four facilities per week — and nurses must learn.   

 

A major and noticeable observation during the clinic visits was the use of an incorrect EMR system 

for many wound clinics. In view of the Obama Administration’s EMR initiative, many facilities are 

“scrambling” to implement and meet the federal government timelines. We observed that most 

facilities needed wound care-specific EMR systems that allow the inclusion of photographs in 

medical records. Many wound care-specific centers are using general EMR systems that are not 

appropriate for chronic wound care. EMR systems for wounds promote patient safety and reduce 

costs through routine chronic wound management [75]. 
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4 CHAPTER 4 WOUND ASSESSMENT METHODS 

CHAPTER FOUR 
Wound Assessment Methods 

 

A number of noncontact, three-dimensional wound surface modeling techniques have been 

developed. However, none have been widely accepted by practitioners due to their low accuracy, 

high cost, and complicated calibration procedures [51]. Researchers have also posed other 

techniques, such as a tracing paper system in which a plastic film is placed over the wound and 

physically traces it with a stylus  an obtrusive procedure with a potential for infection. 

 

Previous studies focus on the three-dimensional modeling of a wound based on geometrical data, 

chromatic data, thermal data, or all of these types of information [22]. Similarly, some studies imply 

that tools provide a better quantitative understanding of the state of a wound. However, no 

nonhospital systems promote the direction of telemedicine and at-home medical aids or that link 

high-quality three-dimensional modeling and quantitative diagnostic tools to aid monitoring of 

wound progress. An ideal technique is to employ a method that does not require contact but is 

able to measure blood flow and other internal characteristics of a wound. The most common 

methods for quantifying wound progression rely on antiquated techniques of physically measuring 

the length and width of a given area. Moreover, the reliability and accuracy of physical 

measurements are problematic because these techniques can be cumbersome and prone to 

human error. 

44.1  CURVATURE-MAPS-BASED METHOD 

Wound surface modeling has become a popular method in determining wound contours. A 

previous study focused on wound measurement using curvature maps and a laser scanning 

system. The curvature maps provide some vital data on the topology of the wound; it is simply a 

noncontact measurement system to acquire a physical model of the injured area [51]. FastSCAN is 
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a common three-dimensional laser-scanning tool used to acquire the topology of a wound to 

create curvature maps but does not collect any medical data.  

 

Other studies have focused on the use of a nonuniform, rational B-spline (NURBS) surface 

technique to measure the ulcerated region and respective wound boundary. Computer graphics 

and imaging analysis use NURBS to create, generate, and represent nonuniform curves [76]. 

Overall, this method uses numerous modalities that assist in the management of chronic wounds. 

However, the method lacks reliability and standardized wound measurement techniques to better 

assess the healing process of a wound [51].  

44.2  THREE-DIMENSIONAL CONSTRUCTION-BASED METHOD 

Only a few methods can acquire a three-dimensional model reconstruction of wounds. The most 

common methods are extremely invasive and potentially painful to the patient. Alternative wound 

measurement techniques include molds and saline infusions, similar to dental molds [22]. Jeltrate 

measures wound volume as an alternative method to planimetry. Jeltrate is inserted and injected 

into wounds to reproduce their three-dimensional shape [22, 77]. Its volume is then calculated by 

weighing the mold. Although dated, Jeltrate is still in use. This method is more susceptible to 

cross-contamination and time-consuming; it is also uncomfortable for the patient [22, 77]. A similar 

method to Jeltrate is injecting a saline infusion into the wound using an amount of liquid dispensed 

from the syringe that is equal to the volume of the wound. This process is less accurate than a 

mold due to the possibility of absorption by wound tissue into the body [22]. Moreover, this 

method is also uncomfortable for the patient.  

 

The Advanced Topometric Sensor II (ATOS II) optical measuring technique uses 

stereophotographic systems to calculate a three-dimensional map of the wound surface. ATOS II 

uses dual charge-coupled-device (CCD) cameras and a central projection. This technique uses 

various fringe patterns on the object of measurement and images are captured by software. These 

fringe patterns allow for a three-dimensional coordinated map of the wounds surface. However, 

ATOS II was originally developed for forensic medical use and provides no quantitative surface 

measurements, such as height, width, and depth.  

4.3  DIGITAL CONSTRUCTION-BASED METHOD 

There is also research on three-dimensional model reconstruction using a traditional digital camera. 

This technique uses noncalibrated photography using the Iterative Closest Point (ICP) algorithm 
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[78]. The ICP algorithm is the dominant method of aligning two- and three-dimensional models 

based purely on geometry and, periodically, color [79]. The ICP algorithm is used to minimize the 

distance between two points in space. It performs this process by looking at local neighbors to 

estimate the transformation parameters using mean-square cost function. ICP is an iterative 

process for acquiring an accurate estimation of the points [79]. Unfortunately, the ICP algorithm is 

prone to accumulative errors that can lead to mapping failures. However, its primary purpose of 

aligning two matrices, two meshes, or two photographs is the relevant aspect to this study. 

 

The use of three-dimensional modeling for wound surfaces and wound depth is not new. A 2007 

study focused on a three-dimensional measuring device using a photometric camera and modified 

laser retrofitted to a digital camera [76]. Researchers in Austria developed this technique, which 

integrates digital photography and a three-dimensional laser-based analysis. The digital camera 

acquires the focal length, exposure time, and shutter time, and the laser acquires depth of the 

wound. The rapid photography technique requires limited calibration. This method has limitations 

with precise measurements of flat wounds and irregularities in wound boundaries. Although the 

precision is inconsistent, it is one of the more compact methods developed to model a wound. 

44.4  COMMERCIAL SYSTEMS 

Commercial systems for wound modeling exist, but no system is singularly above the rest. Many of 

the commercial systems are contact-invasive, awkwardly intrusive, or two-dimensional in data 

acquisition. These techniques are prone to cross-contamination and secondary wound infection 

[52]. The computations of wound areas are made by approximating the contour legions. Systems 

that estimate wound contouring base their approximation on conventional shapes, such as 

rectangles; ellipses; and length and width  also known as ruler-based methods [22]. More 

common approaches exist in acquiring two-dimensional measurements from different angles and 

extracting a three-dimensional model. Several digital planimetry systems are commercially 

available, each unique in its own right; however, none are ideal. 

 

The commercially available Visitrak wound measurement system was developed to “standardize 

the approach of wound measurement” [80]. There is no standardization regarding the system itself. 

Visitrak is a portable tablet that measures the wound dimensions and wound area in an extremely 

invasive manner [80]. It requires the patient to place tracing paper on the wound and trace the 

wound boundary. This method exposes the patient to unnecessary risk for infection and cross-

contamination. Figure 4.1 displays the Visitrak Tracing Methodology. Visitrak also does not 

produce a three-dimensional model. 
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A similar system, from Vision Engineering Research Group (VERG), uses a 3x3-cm reference that is 

placed on the same plane as the wound for calibration. The VERG system is also based on a 

manual tracing technique following the wound periphery. Unlike Visitrak, in which the tracing is 

performed against the wound, the VERG system traces based on a photographic image projected 

on the computer. This software allows the clinician to trace on the computer rather than on the 

patient (Figure 4.2) [52].  

 

 

Although there has been recent progression in wound diagnostics, three-dimensional wound 

modeling is still in its infancy, and there has yet to be a system to incorporate all the components 

 

FIGURE 4.1: VISITRAK TRACING METHODOLOGY [80] 

 

FIGURE 4.2: VERG WOUND MEASUREMENT SYSTEM [52] 
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we are proposing. In Europe, there is more research being performed in this area, resulting in 

systems such as Measurement of Area and Volume Instrument System (MAVIS) (Figure 4.3). 

MAVIS uses a camera to create a three-dimensional contour of a wound using the area and 

volume. Similar to the VERG system, this system lacks the ability to measure the true depth of the 

wound [48, 53].  

 

 

 

 

FIGURE 4.3: MAVIS-II THREE-DIMENSIONAL WOUND MEASUREMENT INSTRUMENT [48, 53] 

 

Mephedos is another system that has been documented as similar to the method proposed in this 

research. Mephedos uses four optical cameras mounted on a tripod. The ability to see and 

perceive a scene at slightly different angles creates depth. Human beings can perceive depth 

because they have two eyes. The loss of sight in one eye limits depth perception. Similar to human 

eyes, Mephedos uses the four optical cameras to create a single triangular frame, allowing the 

combination of images to create three-dimensional image [47]. This system is extremely sensitive 

to accurate calibration and light reflectivity. Wounds provide a moisture bed for both good and bad 

bacteria, resulting in reflective pus. This unpredictable situation causes the Mephedos system to 

fail due to specular reflections and misinterpretation of wound parameters [47].  

44.5  TELEMEDICINE WOUND MANAGEMENT 

More recently, telemedicine, a new technique for medical imaging and health monitoring has been 

developed. Telemedicine allows patients to receive diagnoses and health-related advice through 

the Internet. This new wave of medical treatment allows physicians to diagnose and assess the 

management of wound care using electronic communication rather than physical appointments. 

Several clinical studies showed positive results with telemedicine assessment and patient 

satisfaction [81]. Furthermore, another study supported the use of telemedicine for wound care 

assessment to the extent of determining wound condition and possible treatment options [82]. 
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With the exponential growth of smartphones, consumers have more access to health self-

monitoring resources. With the growth of the smartphone market, consumers can now download 

apps to their phones that allow self-health responsibility. Various companies now offer wound 

management and wound tracking applications that enable patients to photographically monitor the 

progress of their wounds.  

 

The WoundSmart® documentation tool allows patients to document their wound healing progress 

from their smartphones. This app was developed by wound care specialists for personal or 

professional wound documentation. The application allows a user to track multiple patients or one 

patient with various demographic information [83]. This app is specific to wound management and 

wound tracking rather than wound analysis. Figure 4.4 provides screenshots that show the 

limitations of WoundSmart®.  

 

   

FIGURE 4.4: WOUNDSMART® APP USER INTERFACE [83] 

A more comprehensive wound management app was developed to analyze pressure wounds. 

Wound Analyzer® allows patients to view the region of interest and to take images using 

smartphone cameras [84]. The Wound Analyzer® application differs from WoundSmart® in that 

Wound Analyzer® allows users to segment the images into red, yellow, or black segments and 

thus more accurately estimate the health of the wound. The app itself is intended for wound care 

providers rather than personal wound tracking management. Figure 4.4 provides screenshots that 

show the limitations of Wound Analyzer.  
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FIGURE 4.5: WOUND ANALYZER APP USER INTERFACE [84] 

 

The previously mentioned wound management applications are the only two relevant electronic 

health apps that allow clinicians and patients to track and monitor their own wounds. There are, 

however, limitations to these apps. Both apps are recommended for use with wound clinician 

expertise and do not promote the ability to diagnose wounds. Furthermore, the apps have not 

been scientifically validated through clinical studies and do not currently abide by the same Food 

and Drug Administration (FDA) laws. 

44.6  EXISTING PREDICTIVE METHODS 

Predictive models have existed for years in areas such as the stock market or real estate market. 

Yet, predictive models have recently become more prevalent in medicine. For example, numerous 

genetic studies and tests can predict a patient’s susceptibility to cancer based on presence of 

certain proteins or certain biomarkers within the body [34, 36]. Predictive models also exist for the 

prediction of consumer behavior and why people buy what they buy [40, 85]. In other words, 

prediction is a popular method of trying to anticipate and monitor actions and reactions. However, 

in wound healing and treatment, scarce research exists for predictive quantification.  

 

Based on the literature review, no wound predictive models truly predict. As mentioned, they focus 

primarily on cancer and tumor detection rather than wounds [42]. Azimi [42] focused his research 

methodology to monitor and predict daily tumor volume and surface changes of head and neck 
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tumors. His method used regression analysis to effectively predict models for tumor geometry and 

analysis of results. The Azimi model generated two kinds of prediction  one dependent on tumor 

volume and the other based on tumor surface variations [42]. However, the significant difference in 

his model is its dependency on the quantitative amount of chemotherapy a patient receives. The 

method relies on the feedback of a visual analysis to determine whether a treatment is working. 

44.7  SUMMARY 

Although wound systems exist in research and commercial applications, none encompasses ideal 

functionality for measuring or modeling a wound. Furthermore, none of these systems applies a 

quantitative determination of the wound progression state. Although modeling of a wound is 

significant in understanding wound pathology, a model simply does not help in quantifying its state 

of healing in the shortest time, which is the ultimate goal. The existing research and commercial 

methods have progressed chronic wound analysis but lack the ability to be used in real-time clinic 

settings. We must better determine the appropriate and relevant patient and wound parameters to 

establish which characteristics indicate proper wound healing. 
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5 CHAPTER 5 WOUND PARAMETERS 

CHAPTER FIVE 
Wound Parameters 

Wound evaluation, treatment, and analysis vary depending on the institution, the hospital, or 

medical facility. A chronic wound is one that is nonhealing or that does not follow the healing 

stages within 12 weeks of acquisition [21, 64, 68]. This section will discuss four wound centers, 

Tufts Vascular, Wound, and Hyperbaric Center (Tufts) in Boston; Morganti Wound Center 

(Morganti) in Danbury, CT; Raritan Bay Medical Center (RBMC) in Perth Amboy, NJ; and Vohra 

Wound Care Physicians (Vohra) in Mirimar, FL. These sites typically receive patients whose wounds 

have not progressed in healing for a substantial amount of time. These wounds usually have 

existed for approximately eight to 12 weeks, and the patients’ primary care physician cannot 

achieve healing. Unlike the other three clinics, Vohra is a private company that provides wound 

care nurses and physicians to patient rehab facilities and nursing homes. 

 

The purpose of sharing the clinic experiences in this thesis is to show examples that currently 

occur in medical practice and in the general practice of wound care. Understanding what currently 

exists in practice helps us to better understand how to integrate the methodology in the least 

disruptive manner.  

55.1  TUFTS VASCULAR, WOUND, AND HYPERBARIC CENTER 

Tufts Vascular, Wound, and Hyperbaric Center focuses on multidisciplinary treatment for chronic 

wounds, including diabetic, venous, and pressure ulcers [86]. The focus and wound classification 

is based on arterial, venous, and diabetic wounds. We observed clinical practice and treatment of 

wounds to gain a perspective and understanding of chronic wound care treatments and daily 

activities. Additionally, we developed a sense of what physicians and nurses record pertaining to 

wounds.  
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At Tufts, we were exposed to how a toe amputation debridement differs from a callous, large heel 

wound. Furthermore, the clinic experience at Tufts allowed us to understand how nurses measure 

the surface area of a wound and understand patient characteristics that are vital to chronic wound 

healing. We began to understand how patients develop chronic wounds. For some, the chronic 

wounds occur after a stubbed toe, and, for others, nonhealing results from the patient’s failure to 

comply with doctor’s orders.  

55.2  MORGANTI WOUND CENTER AT DANBURY HOSPITAL 

Morganti Wound Center is in Danbury Hospital. Similar to our experience at Tufts, we observed 

Morganti for patient care and wound care treatment. Additionally, we worked with the center’s 

clinical manager and learned from his expertise pertaining to wound care-specific training, 

resources, and hyperbaric medicine. Morganti is wound-care-specific; 50% of its patients’ wounds 

are a result of surgical wounds; and 75% to 80% are wounds below the knee [72]. Morganti 

primarily tracks surface measurements, such as width and length; however, like most other clinics 

they use the wooden ends of wooden Q-tip swabs to measure depth. 

 

Bryant et al. [2] has supported the idea that common and accessible wound assessment is 

important to the management of nonhealing wounds. Their literature has documented procedures 

for the ulcer assessment, physical assessment parameters, and assessment cofactors. Table 5.1 

summarizes this information [2]. A common practice among wound care clinics follow the Bryant et 

al. [2] procedural assessment in Table 5.1 and Table 5.2. Nurses and physicians track surface 

measurements, including length, width, and depth of a wound. Using the assessment parameters 

in Table 5.1 and Table 5.2, wound treatment begins with a patient first seeing a nurse, then the 

clinical manager, then the physician, and then the nurse again to apply a dressing to the wound. 
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TABLE 5.1: WOUND ASSESSMENT, PHYSICAL ASSESSMENT PARAMETERS PROCEDURES FOR PRACTITIONERS [2] 

WWound Assessment 

Parameters 

Anatomic location of wound 

Extent of tissue loss  

Characteristics of wound base 

Type of tissue 

Percentage of wound containing each type of tissue observed 

Dimensions of wound in centimeters  

(length, width, depth, tunneling, undermining) 

Exudate (amount, type) 

Odor 

Wound edges 

Periwound skin 

Presence or absence of local signs of infection 

Wound pain 

PPhysical Assessment 

Parameters 

Wound etiology and differential diagnosis 

Duration of wound 

 

Cofactors 

·   Comorbid conditions (diabetes, cardiac) 

·   Medications 

·   Host infection 

·   Pressure ulcer risk factors 

·   Decreased oxygenation and tissue perfusion 

·   Alteration in nutrition and hydration 

·   Psychosocial barriers 

·   Past therapies 

 

Table 5.2 summarizes the skin-assessment parameters that literature has acknowledged as the 

most important in the indication of wound health.  
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TABLE 5.2: SUMMARY OF WOUND-ASSESSMENT PROCEDURES FOR PRACTITIONERS [2] 

 

 

 

 

 

 

 

 

 

 

55.3  RARITAN BAY MEDICAL CENTER: THE CENTER FOR WOUND CARE 

The Center for Wound Healing at RBMC is in a small, community hospital. Wound care procedures 

at RBMC are similar to those at both the Tufts and Morganti clinics. RBMC schedules patients at 

intervals of 30 to 45 minutes. The wound clinic rotates four patient rooms with four nurses and one 

physician. Typically, the wound clinic sees 25 to 40 patients per day, depending on the analysis of 

the patients’ previous week. RBMC observation provided us insight into their hospital’s operational 

procedure and allowed us to use a thermal imaging camera to photograph patient wounds over a 

short period. Furthermore, RBMC takes photographs of wounds throughout a patient’s duration at 

the wound clinic as documentation of wound change over time. This documentation allows us to 

compare changes over time, such as color, size, and temperature. Figure 3.5 summarizes the 

patient/nurse/doctor procedure at RBMC.  

 

Over three weeks, we visited the same 18 patients, documenting their wound temperature with a 

thermal imaging camera. The thermal imaging camera provided us the temperature difference 

between the surrounding environment and their wounds. Chapter 9 documents three of these 

patients. 

5.4  VOHRA WOUND CARE PHYSICIANS 

Vohra Wound Care Physicians, a private company, acts as a liaison between wound care 

physicians and facilities such as nursing homes. Vohra maintains a database of patients and their 

SSkin-Assessment Parameters 

Color 

Moisture 

Temperature 

Olfaction 

Texture 

Turgor 

Lesions 

Skin Injury 

Nails 

Hair 
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respective wounds. This company supplied us with an enormous amount of data to analyze. The 

data analysis concentrated on 6,600 unique wounds that were treated by a physician a minimum 

of five times, resulting in approximately 860 unique patient visits and their corresponding wound 

measurements.  

 

Vohra Wound Care Physicians provided us with data strictly detailing the attributes of the patient 

wounds. Unfortunately, the company did not provide any patient demographic data due to strict 

Health Insurance Portability and Accountability Act (HIPAA) privacy laws. The data provided by 

Vohra included the following wound attributes: 

 

 TABLE 5.3: SUMMARY OF ASSESSMENT PROCEDURES FOR PRACTITIONERS 

WWound Attr ibute AAttr ibute Measurement Unit 

Etiology Arterial, venous, diabetic 

Location Body part code 

Date of Service Date 

Length 1 Centimeters 

Length 2 Centimeters 

Depth Centimeters 

Undermining Percentage 

Granulation Percentage 

Yellow Necrotic Tissue Percentage 

Black Necrotic Tissue Percentage 

Slough Percentage 

Left Doppler Frequency 

Right Doppler Frequency 

Nutrition Grams/deciliter 

55.5  WOUND CARE CLINIC SUMMARY 

Based on observations, most wound clinics emphasize detail, thoroughness, and consistency. 

According to the practices we observed, wound measurement accuracy and reliability is highly 

clinician-dependent. Swelling, especially in wounds, creates physical tension within the body, 

potentially causing inaccurate measurements. Similarly, all the practices we observed reinforced 

the idea that a red wound can heal; if the wound bed is not red and granulation does not expose 

red tissue, the wound is dead. Moreover, all practices had a general consensus that the wound 
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bed can support granular tissue only if the wound bed is viable and active. For the wound to 

properly heal, granulation must occur because it allows new, healthy skin to grow across and close 

the wound.  

55.6  INDEPENDENT PARAMETER CORRELATIONS AND RELATIONSHIPS 

Through chronic wound care data analysis, we used a series of correlation plots (Figure 5.1 and 

Figure 5.2) to determine the importance, relevance, and impact each variable had on the final 

algorithm. Additionally, we used correlation plots and correlation matrices to determine variable 

relationship and whether each variable was truly independent of one another.  

 

The final algorithms do not provide every provided input variable. Figure 5.1 shows the relationship 

between each input variable to each other. It also shows whether any redundancy exists within the 

input variables by using color to represent the strength of their relationship to each other. The only 

variables that have a strong enough correlation with each other are the right and left Doppler 

values. This is expected because the Doppler readings represent the level of circulation in the right 

and left legs, respectively. We would expect this strong relationship because if a patient has poor 

circulation in one leg, the probability is greater that he or she would have poor circulation in the 

other leg. 

  

Figure 5.2 shows a better visual representation of the directionality of each of the input variables 

and that they are visually correlated, not just that they are correlated. For example, we observe that 

the right and left Doppler are positively correlated. 
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55.7  PARAMETER CORRELATION 

By understanding the behavior of the data, we were better able to determine the relevant input 

variables of the algorithms. We determined these variables through a combination of correlation 

plots and an understanding of recorded wound characteristics that seem to be consistent across 

wound care facilities. Although some facilities may have a more comprehensive patient and wound 

data collection than others, we focused on the characteristics that were consistent across facilities 

or that we could determine through patient’s medical records. We have determined that four 

wound attributes in Table 5.1 and Table 5.2 statistically impact the accuracy and precision of the 

proposed methodology, as Chapter 9 shows. These four variables are length 1, length 2, depth, 

and granulation. 

5.8  SUMMARY 

Through discussions with all facilities, we found that wound care practices lack adequate and 

consistent tools. This lack hinders their ability to provide consistent and concise standards of care. 

Furthermore, the tools that are currently being developed to supplement the quality of wound care 

are for research purposes only, are too expensive for clinical practice, or are inadequate and 

awkward for clinical use in real time. The variety of wounds these practices experience only propels 

and reinforces the theory that there is a need for a more efficient system that assists in determining 

an accurate wound healing methodology.  
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6 CHAPTER 6 PRELIMINARY STUDY 

CHAPTER SIX 
Preliminary Study 

To support the pursuit of a larger study, we have performed a smaller study with fewer patients 

and a limited number of variables. The purpose of this preliminary study is to determine the efficacy 

of the hypothesis. Based on the visits to these wound clinics, we identified three common issues: 

1) lack of consistent measurement tracking; 2) lack of reliable data collection; and 3) lack of 

monetary funds to purchase equipment. However, the primary observation noticed among all 

practices is the lack of a standard procedure for care across the respective visited clinics. Although 

we do not believe that a modeling system can predict healing time for all types of wounds, we 

expect to see a common system that would encourage more consistent data collection of a 

common set of wound parameters. This preliminary study focused on three common wound 

parameters: width, length, and depth. In the larger study, we will add parameters such as 

granulation as covariate inputs. 

 

The preliminary study focused on the development of an algorithm to predict the number of weeks 

before lower appendage wounds heal. We present, in this section, 37 original, chronic, nonhealing 

wounds to examine how the width, length, and depth affect the amount of time to heal.  

66.1  DATA COLLECTION 

After much investigation, we have identified three primary characteristics in the data collection. 

Table 6.1 articulates the ideal set of characteristics that we deemed necessary to establishing a 

reliable predictive model for wound healing time. The extensiveness of details characterizing 

wounds made data collection and information gathering challenging tasks. We had planned to 

photograph patients’ wounds, and we also verified that data collection, recordings, and clinician 

measurements on a given patient were reliable and consistent. We noticed that hospital practices 

use a great variety of techniques in measuring patients’ wounds and that this variety has resulted in 
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inconsistent measurements. Based on these observations, we deemed the retrospective 

measurements too inaccurate to use in a predictive modeling system. 

 

TABLE 6.1: DATA-COLLECTION COMPONENTS 

PPatient History 

• Age 

• History of chronic wounds 

• Overall health 

• Arterial disease (yes or no) 

• Venous stasis disease (yes or no) 

• Diabetes (yes or no) 

• Ankle brachial index (ratio) 

HHistory of Chronic Wounds 

• Initial wound development 

• Time without healing 

• Historical photos 

• Previous dimensions 

CCurrent State of Wounds 

• Current dimensions 

• Depth 

• Temperature profile 

• Substantial change (yes or no) 

 

To understand what data to collect, we spent time in wound clinics observing their daily practices. 

After observing multiple wound clinics, we decided to develop a predictive modeling system that 

uses both still photography and thermography (Figure 6.1) to allow for more consistent wound 

tracking and assessment over a long period. From the wound image (Figure 6.1a), we can acquire 

the respective surface dimensions of the wound. The surface measurements are the typical 

measured and recorded wound attributes [87] by the previous researchers. The wound thermal 

image (Figure 6.1b) provides the heat map of the wound to confirm proper healing. Ultimately, 

images provide qualitative and quantitative data about the wound to help us estimate the length of 

healing time.  
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(a) Still Photograph 

 

(b) Thermal Photograph 

 

FIGURE 6.1: WOUND IMAGES OF A PATIENT’S HEEL WOUND 

 

Appendix A shows the data of multiple wounds from multiple patients. The weight variable 

indicates whether a patient had multiple wounds and thus a predisposition for chronic wound 

development. For the preliminary study, we used a healing rate of 0.15 cm2/week to estimate the 

time to heal in weeks. This healing rate was confirmed through clinicians and previous studies that 

examined whether healing rates were a reliable early predictor [88, 89]. Furthermore, this wound-

healing rate was an acceptable consensus among the collaborators at the various wound clinics. 

Figure 6.2 provides a graphical representation of the data and their corresponding estimated 

regression lines to provide the initial curvature of the data in Appendix A. The data in Appendix A 

allows us to further develop a predictive algorithm for wound progression over time. Table 4 

provides additional input factors for algorithm exploration. The data will be useful to statistically 

determine whether the variables are relevant to the time to heal for a patient’s wound.  
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TABLE 6.2: INPUT FACTORS FOR ALGORITHM 

AAdministrat ive Data 
• Patient reference number 

• Date of observation 

PPatient Attr ibutes 

• Ankle brachial index (ratio) 

• Diabetes (yes or no) 

• Venous stasis disease (yes or no) 

• Arterial disease (yes or no) 

• Wound location on body 

WWound Character ist ics 

• Width (centimeters) 

• Height (centimeters) 

• Depth (centimeters) 

• Wound base (color) 

• Undermining 

• Wound shape 

• Necrotic tissue 

• Photos (still photography) 

• Photos (thermal photography)  

• Predicted cross-section 

66.2  STATISTICAL IMPLICATIONS 

To establish a reliable and accurate predictive model, we divided the data into two groups: training 

and testing data points. We used the training data to develop the predictive algorithm (Appendix A) 

and the testing data to confirm the accuracy of the algorithm. 

 

We performed two analyses on the raw data. Using the original data, we developed a single 

predictive algorithm that was dependent on width, height, and depth. The second analysis involved 

the transformation of the raw data to the natural log. The purpose of this transformation was 

twofold: 1) to determine whether the data could be linear; and 2) whether the natural log 

transformation simplify the algorithm. The natural log transformation could approximate a linear-

regression predictive model and displayed the data as a traditional decay model. The equation of 

the natural log predictive algorithm is given by: 

 

 

 

(6.1) 
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To determine the validity of the algorithm, the correlation and redundancy of the variables were 

verified to ensure the reliability of the model. The correlations in Table 6.3 show the strength of the 

positive and negative relationship among all the variables. This measurement includes the 

relationships between each input variable to each other and then each input variable to the output 

variable. For example, width has a strong positive correlation with height and the number of weeks 

to heal. Similarly, height has a positive relationship with depth and weeks to heal, and depth has a 

strong positive correlation with weeks to heal. The Pearson Correlation, or correlation coefficient, 

measures the strength and direction of the linear relationship between two variables. The strongest 

relationships are among width, height, and the number of weeks to wound closure. Height and 

width also have a strong correlation, indicating that only one of the variables may need to be in the 

final predictive model. Although the relationship between these two variables is statistically strong, 

it is not strong enough to eliminate a variable from the final algorithm. 

 

To create and establish a mathematically accurate algorithm, each variable of the algorithm needs 

to be evaluated in comparison to the algorithm output. Table 6.4 provides the model summary 

coefficients for each variable: width, height, and depth. The model summary presents the results of 

the statistical analysis of the original data to determine the equation parameters. This model 

summary helps us determine a model fit of the regression equation to the respective variable data 

and their corresponding parameter estimates. Based on the model summary results and the 

parameter estimates, the best-fit regression model is selected. Table 6.4 shows the parameters for 

the best-fit model for width, height, and depth. 
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TABLE 6.3: CORRELATIONS AMONG VARIABLES 

  Width (cm) Height (cm) Depth (cm) Weight Weeks to Heal 

(Surface Healing 

Rate) 

Width (cm) Pearson Correlation      

P-Value      

N      

Height (cm) Pearson correlation 0.676     

P-Value .000     

N 30     

Depth (cm) Pearson Correlation 0.190 0.360    

P-Value 0.315 0.050    

N 30 30    

Weight Pearson Correlation 0.349 0.160 -0.223   

P-Value 0.059 0.398 0.237   

N 30 30 30   

Weeks 

to Heal  

Pearson Correlation 0.713 0.697 0.402 0.150  

P-Value 0.000 0.000 0.028 0.428  

N 30 30 30 30  

 

 

TABLE 6.4: SUMMARY OF PARAMETER ESTIMATES FOR MULTIPLE-REGRESSION MODEL 

Parameter Estimates  

Constant Width Height Depth 

-41.937 5.9885 2.8063 5.7984 

    

Standard Error    

Constant Width Height Depth 

7.95 1.68597 1.65112 3.372 

 

The best-fit regression estimate is based on the R2 value. R2 indicates the percentage of the 

variation in time that is explained by the model. The adjusted R2 makes corrections for the addition 

of extraneous predictors to the model. Lastly, we use the standard error of estimates to measure 

the extent at which the data deviates from the best-fit line. We look for the standard error to be 

small, allowing a good fit of the equation to the data without overfitting the data. The final best-fit 

linear regression model is given by:  
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Time to Heal (Weeks)  

 

(6.2) 

Equation (6.1) allows us to understand the underlying correlation of the variables. It also assists in 

the determination of whether there is a linear relationship of the input variables and the output 

variable. Equation (6.2) provides us the actual best-fit linear regression model into which we could 

input wound characteristics width, height, and depth, and the output will be the number of weeks 

from wound conception to time to heal. 

66.3  MODEL VALIDATION AND VERIFICATION 

Appendix A shows 37 wound data points. We use 23 points as training data to develop the model 

and 15 records to validate the model. The model presented here is a preliminary model to establish 

the efficacy of the theory and hypothesis. Table 7 shows the model results. The “Actual Output” 

represents the original data that was received from the patients. The “Theoretical Output” column 

shows the values of the calculated theoretical time to heal (Weeks) using Equation (6.2). We 

calculated the error and percent error using the standard error equations in Equation (6.3) and 

Equation (6.4). For this linear-regression model, the validation data resulted in, on average, a 

smaller percentage error than the test data (Table 6.5). There are many possible reasons for this 

discrepancy that we will discuss later in this dissertation. 

 

 

 (6.3) 

 

 

 (6.4) 

 

We believe that, with further refinement of the algorithm and the collection of additional data, the 

algorithm will be a more comprehensive and robust algorithm. With larger amounts of data, we can 

better predict a more accurate time to heal of chronic, nonhealing lower-leg wounds.  

 

We recognize that some of the percentage error is high with some of the test records. We hope 

that, with future studies and more patient information, we will be able to lower the percentage error 

when testing algorithmic models. With respect to this data, the high percentage error could be 

attributed to the additional health issues with the patient. For example, the patient could claim 

compliancy and not be truly compliant. Nutrition also has a big impact on wound healing. As a 
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result, another factor contributing to the high percent error could be the poor nutrition of the 

patient. The high percentage error could be the result of a multitude of other, uncontrollable patient 

issues that we did not have access to for this study. 

 

TABLE 6.5: MODEL TEST DATA  

Actual Output Theoretical Output Error Percentage Error 

90.5 77.52 0.13 12.98 

15.7 19.15 -0.03 -3.45 

3.5 -6.85 0.10 10.35 

6.9 1.94 0.05 4.96 

18.8 22.43 -0.04 -3.63 

27.6 58.75 -0.31 -31.15 

5.2 8.79 -0.04 -3.59 

36.7 49.19 -0.12 -12.49 

8.4 22.99 -0.15 -14.59 

0.3 -17.05 0.17 17.35 

5.4 0.78 0.05 4.62 

0.9 -16.75 0.18 17.65 

2.3 0.73 0.02 1.57 

20.9 46.20 0.25 -25.30 

 

To show that the data is randomly distributed and is not predisposed to a certain number of 

weeks, we have constructed a histogram of the distribution of the time to heal in weeks (Appendix 

A). The histogram in Figure 6.3 appears to skew to the left, and we attribute this phenomenon to 

the fact that most wounds in this data set have similar dimensions. We believe that, with a larger 

data set, Figure 6.3 will shift from a left-skewed data set to a more normal distribution.  
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FIGURE 6.3: DISTRIBUTION OF TIME TO HEAL IN WEEKS 

66.4  SUMMARY 

This study presents preliminary findings on the development of a predictive model for chronic 

wound healing time. It appears that the length and width appear to have a strong relationship with 

wound healing time and perhaps re-create redundancy in the algorithm. However, this finding can 

be confirmed only with additional data collection and analysis. We believe that, with a greater 

variety of patient data and wound characteristics, the algorithm will be become more reliable in its 

predictive capabilities. The next phase of development for this study is to collect more data and 

refine the algorithm to incorporate additional wound attributes. It should also focus on additional 

wound characteristics and photographic evidence to determine whether temperature can be an 

accurate predictor of wound health and wound viability. 

6.5  LIMITATIONS 

We recognize that this study has limitations regarding the number of possible inputs for a 

predictive model for wound healing. Additionally, we recognize that the sample size is not 

statistically large enough to develop a truly reliable and robust model. We designed this study to 

ascertain and test the efficacy of the hypothesis in developing a wound healing predictive model. 

The wound characteristics in Table 5.1 and Table 5.2 would be the ideal set of characteristics to 

better predict wound healing. In this data sample, we do not have access to additional patient 

health information. For the preliminary study, we did not know how other factors affect the result of 

healing time. We hope that, with the larger study, we would have access to more patient 
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information and health records to determine whether the other characteristics affect the predictive 

model accuracy. One final limitation of not only this study but also all wound care assessment 

studies is human variability in wound measurements. The effect of human measurement variability 

impacts the predictive model at the microscopic level, but when patient data is recorded over a 

period of months, the macroscopic observations provide a more definitive trend. 

66.6  PRELIMINARY STUDY ANALYSIS 

This preliminary study presents preliminary findings on the development of a predictive model for 

chronic wound healing time. It appears that length and width have a strong relationship with 

wound healing time and perhaps re-create redundancy in the algorithm. We confirmed this finding 

with the larger data set and analysis in Chapter 8.  
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7 CHAPTER 7 WOUND HEALING MODELING 

METHODOLOGY 

CHAPTER 7 
Wound Healing Modeling Methodology 

 

77.1  METHODOLOGY OVERVIEW 

The core of the method is its ability to use a predictive model to quantify the percentage of a 

wound healed over a period of time. This method will provide clinicians with a better understanding 

of what treatments will be successful. Additionally, the wound diagnostic system will further the 

progression of telemedicine and the ability to monitor wound progression from remote locations. 

Figure 7.1 shows an overview of the proposed methodology and its respective components. 

 

The uniqueness of this method is determined by the combination of qualitative and quantitative 

information available to clinicians. The health of a wound is determined in the following order of 

importance: the health of the tissue, the presence of granulation, the size, and the drainage of the 

wound. These parameters are the primary components that determine the health of a wound. 

Further, they are all parameters that are determined by observation  enormously subjective and 

prone to human judgment. The method uses still photography and thermal photography to 

accurately measure the size and depth of a wound. By providing the ability to more accurately 

ascertain the topology of a wound, it will provide a better understanding of the wound’s 

characteristics. Using the combination of still and thermal photography, the method provides us 

with information on the viability of the wound  that is, whether the wound bed itself can support 

wound healing.  
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In further detail, the method will have three overall stages: 1) data acquisition and analysis; 2) 

image acquisition, geometric construction and analysis; and 3) data mining, predictive models. The 

first stage will allow us to collect the data and preprocess it to prepare it for data analysis. In 

parallel, the methodology will perform image acquisition using both optical and infrared cameras. 

An optical camera will acquire an image of the top of the wound, and the infrared camera will 

capture an image of the depth and heat dispersion of the wound bed and surrounding area. The 

image acquisition will allow us to construct a geometric three-dimensional model to enable us to 

see over time the wound’s growth or shrinkage. The method uses more than a three-dimensional 

model of a wound, like many of its predecessors use. It is a diagnostic method that will assist 

clinicians in determining the healing state of a wound in a quantitative manner to eliminate some of 

the subjectivity of wound assessment. Lastly, we will use this information to create a predictive 

model in which the dependent variable will result in time to heal, which represents the number of 

weeks left for the healing process provided that the patient is compliant. 

 

The method is based on prognostics and prediction. This model evaluates and analyzes multiple 

predictive methods techniques to ensure robust and accurate outcomes. By evaluating and 

analyzing multiple predictive modeling techniques, we then compare the results, accuracy, and 

precision of each model within itself and then with each other. There is a strong need for various 

modeling methods, depending on the type of data we are analyzing. The remainder of this chapter 

describes the two predictive models that best fit this set of data: regression analysis and neural 

networks. 

 

We designed this experiment to reflect the nature and variability of trying to predict the amount of 

time left to heal for chronic wounds. We performed a series of correlation and relationship analyses 

to determine the importance of the independent inputs to the mathematical models. We explored 

multiple predictive-model techniques and determined that three methods were ideal for this set of 

data: multiple linear regression, nonlinear regression, and neural networks. In the following 

sections, we will describe the theory and intent behind each of the predictive modeling methods. In 

Chapter 9, we apply each model to the data and compare and analyze their respective results to 

determine the most accurate predictive model. 

77.2  REGRESSION ANALYSIS 

Regression models are the most widely known and applied analysis methods that can predict both 

categorical and continuous values. This situation warrants regression analysis that predicts 

continuous values rather than categorical values. Regression analysis is a methodology that 
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models a relationship between one or more independent variables to one or more dependent 

variables. In this case, the independent variables consist of wound characteristics, and the 

dependent, or response, variables represent the time to heal.  

For the purposes of this dissertation, we will provide a brief discussion on linear and nonlinear 

regression. The linear-regression technique involves one or more predictor variables and a single 

response variable [90]. Single linear regression is the simplest regression model. The model is a 

linear function given by:  

 

 (7.1) 

 

Multiple linear regression involves more than one predictor variable and one response variable. 

Multiple linear regression is a linear function of response variable  of  predictor variables 

. This is expressed in Equation (7.2) where  represents the error of prediction [90, 

91]. 

 

 (7.2) 

 

Regression analysis requires that we make certain assumptions. Regression analysis assumes that 

the predictions based on the equation are the best predictions possible, are unbiased, and have a 

smaller average squared error than do any unbiased estimates. This methodology is further 

dependent on the assumptions that [92]: 

1) The error ( ) follows a normal distribution. 

2) The linear relationship is correct. 

3) The predictor variables are independent of each other. 

4) The variability in  values for a given set of predictors has homoscedasticity  that the 

variability is the same regardless of the values of the predictors (homoscedasticity). 

Regression analysis allows us to use and determine a predictive algorithm with as many numbers 

of predictors as we choose. However, regression analysis may not need every predictor variable. 

Through correlation matrices and various statistical parameters, we can reduce the number of 

predictors to only those that are necessary. The most popular criterion, , is given by: 

 

 

 

(7.3) 
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 is a statistic that is used to assist in the selection of ideal number of predictors that minimizes 

error and maintains best fit [92].  

 

Another popular statistic is Mallow’s : 

 

 

 
(7.4) 

 

Mallow’s  assumes that the predictive model is unbiased. Good models return values near 

the total number of parameters ( ) plus one.  

77.3  NONLINEAR-REGRESSION ANALYSIS 

Nonlinear regression models contain the same basic form as linear-regression models. Nonlinear 

regression is used when linearity and a linear pattern do not fit the respective data. Nonlinear 

regression modeling is another method used to predict outputs based on given predictor (input) 

variables. Nonlinear regression is also known as curve fitting or the process to determine the best-

fit equation to the observed data [93]. 

 

Nonlinear regression allows us to specify the approximate function with parameters as a foundation 

of understanding what model best fits the behavior of the data. In this case, we predict the steady 

decline of each wound parameter in an exponential or a logarithmic behavior, as given by: 

 

  (7.5) 

77.3.1  SURVIVAL ANALYSIS 

Survival analysis is a predictive modeling technique that is used to model time-to-event situations 

[94]. Unlike linear regression, survival analysis has a dichotomous outcome and analyzes the 

amount of time to an event [95]. The importance of this type of modeling refers to the ability to 

predict the amount of time left for an event to occur. In this case, the time left to heal for chronic, 

nonhealing wounds. Survival analysis provides us with the tools to understand and assess the 

relationship between the covariates or predictor variables and the survival time. 

 

Survival analysis hinges upon the comparison between the survival probability and the time to 

event. This analysis is used with situations such as the recurrence of cancer after treatment. In this 
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case, the analysis refers to the probability of a wound to heal in a specified amount of time. Survival 

analysis produces two distinct plots: a survival plot and a hazard plot. The survival plot provides a 

visual representation of the model-predicted time to heal for the average wound. The hazard plot 

provides a visual representation of the cumulative model-predicted potential to heal for the average 

wound [95, 96]. The hazard function is the derivative of the survivor function over time: 

 

  (7.6) 

 

Cox proportional hazards method of survival analysis is widely employed in time-to-event data 

analysis [95]. The Cox regression model is the most commonly used multivariable survival method 

for assessing the effect of multiple covariates on the time to event. The proportional hazards model 

assumes that the time to event and the covariates are related through the following equation [97, 

98]:  

 

  (7.7) 

 

where 

 

 is the hazard rate for the ith case at time t 

 is the baseline hazard at time t 

 is the number of covariates 

 is the value of the jth regression coefficient 

 is the value of the ith case of the jth covariate 

 

 

Similar to the general survival analysis explanation, the Cox regression model works with the 

hazard model to separate the baseline hazard function and the survival function. The Cox model 

assists in distinguishing the contribution of each independent covariate on the outcome or survival 

of time to event [99]. In other words,  represents the probability that the chronic wound will 

survive until time . 
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77.4  NEURAL-NETWORK ANALYSIS 

Neural network analysis models the adaptive behavior of the human brain. This data-mining 

process mimics human thinking, adaptation, and modification. Neural networks consists of a set of 

nodes that are characterized by input, output, and intermediate nodes [100, 101]. More 

specifically, neural network consists of four distinct components: a neuron; a set of synapses, or 

connecting links; an adder; and an activation function [100, 102]. 

 

A neuron is the overarching model for information processing that is critical to the operation of a 

neural network (Figure 7.2) [100]. The neuron consists of three basic elements: a set of synapses, 

or connecting links; an adder; and an activation function. Specifically, input  connects to synapse 

. The set of synapses carry the respective information from one location to another. Each synapse 

is characterized by a weight or a strength that is indicative of the impact that a single input will have 

on the overall system. The weight or strength is represented by . The  subscript represents 

the specific neuron in question. The adder or the summing junction represents the combiner for the 

weighted input signals. Finally, the activation function determines the new level of activation or 

permissible amplitude range based on the input and current activation and converts them to some 

finite output signal value [100]. In Figure 7.2,  is the externally applied bias that can increase or 

decrease the net input of the activation function depending on whether the output is positive or 

negative.  

 

In essence, neural network techniques are series of nonlinear nodes that communicate in parallel. 

The synaptic weights allow the network to adapt without having an analytical solution [101].  
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FIGURE 7.2: NEURON MODEL [100] 

  

Figure 7.2 is represented in mathematical terms for neuron  through a pair of equations [100]: 

 

 (7.8) 

and 

 

 

 

 
(7.9) 

 

 

There are two types of learning methods of neural-network analysis: supervised and unsupervised 

learning. Supervised learning is like learning with a teacher (Figure 7.3). In this situation, the teacher 

has the knowledge and is able to provide the neural-network environment using various training 

vectors. The supervised-learning process constitutes a closed-loop feedback system with the 



www.manaraa.com

 

 75 

unknown environment outside the loop. Supervised learning is the basis of error-correction 

learning, in which the neural network is adjusted using an iterative step-by-step process, with the 

aim of having the neural network emulate the teacher. Emulation is considered optimum when the 

knowledge of the teacher is transferred to the neural network and the synaptic weights are fixed 

[100, 101]. 

 

 

 

 

FIGURE 7.3: LEARNING WITH A TEACHER [100] 

  

There are two forms of learning without a teacher: reinforcement learning and unsupervised 

learning. Reinforcement learning is learning performed through an input-output mapping through 

continued interaction with the environment to minimize the scalar index of performance. Figure 7.4 

provides a block diagram of one form of a reinforcement-learning system. The system in Figure 7.4 

learns under delayed reinforcement or an observational temporal sequence of stimuli sent to the 

environment. This learning ultimately leads to the generation of the heuristic reinforcement signal 

[100, 101].  

 



www.manaraa.com

 

 76 

 

 

FIGURE 7.4: LEARNING WITHOUT A TEACHER, REINFORCEMENT LEARNING [100] 

 Unsupervised, or self-organized, learning occurs when a neural network learns without a teacher 

or critic to oversee the learning process. The unsupervised-learning method requires the network 

to learn despite not receiving external feedback. This type of neural network can generally extract 

useful relationships from the input by learning the respective concepts itself [100]. Figure 7.5 

provides a block diagram that represents self-organized learning for which there is no external 

teacher. 

 

 

 

 

FIGURE 7.5: UNSUPERVISED LEARNING [100] 

 

For the analysis of the data, we used XLMiner, a Microsoft Excel add-on that features both 

statistical- and machine-learning methods [103]. This software allows us to partition the data and 

assist in the development of predictive algorithms and outcomes based on various methods of 

prediction, one of which is neural networks.  
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77.5  THREE-DIMENSIONAL CAD GEOMETRIC MODEL 

Medical imaging has evolved dramatically in the past few decades due to the constant change of 

digital imaging sensor chips. With multidetector computed geography (MDCT) and magnetic 

resonance imaging (MRI), three-dimensional imaging has become less invasive and more easily 

accessible [104]. These machines are large and expensive. For example, three-dimensional 

imaging is heavily used for viewing, tracking, and monitoring tumor growth. With the cost of three-

dimensional imaging decreasing, a corresponding technique, three-dimensional modeling, is 

becoming more achievable, specifically in medicine. Unlike three-dimensional imaging, three-

dimensional modeling involves the creation of a virtual model based on input dimensions. Three-

dimensional modeling provides a three-dimensional scan of the geometry of a wound that is then 

imported into a three-dimensional modeling program, such as Solidworks™. 

 

To acquire an accurate three-dimensional model of a wound, we needed to determine an accurate 

method of correlating pixels and centimeters. Using the methodology in Chapter 8, we were able 

to accurately determine the shape and size of the wound. We then proceeded to analyze the 

image using the process in Figure 7.6 to obtain the final pixel XY coordinates of the edge of the 

wound using color intensity values in Chapter 8. In essence, a digital image is simply a two-

dimensional matrix comprising various intensity, or numerical, values that create a visual image.  
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FIGURE 7.6: EDGE DETECTION TO SPLINE CREATION METHODOLOGY 

 



www.manaraa.com

 

 79 

Specifically, the CIELAB  for lightness, Color Channel A, and Color Channel B color space 

was the key to wound- and image-boundary analysis. The LAB color offers better digital 

manipulation than does the traditional RGB (red/green/blue) color space. This is attributed to the 

luminance of the LAB color space (Figure 7.7). This modification in color profile allowed the 

algorithms to better detect a precise wound boundary. 

 

 

 

FIGURE 7.7: CIELAB COLOR SPACE [105, 106]

Different parts of the body have different temperatures. As a result, we have the ability to measure 

the change in temperature using techniques such as thermal imaging.  

77.6  THERMAL-IMAGING (THERMOGRAPHY) MODEL 

Thermal imaging uses thermal photography to measure natural thermal radiation generated by an 

object at a temperature above absolute zero [53]. The use of thermal imaging in wound analysis is 

appealing because it is noninvasive and provides a method of investigating physiological changes. 

It does not replace X-rays and three-dimensional scanning techniques but rather complements 
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techniques such as computed-tomography and MRI scanning. Like all other photography 

techniques, thermal cameras use specialized lenses to absorb infrared wavelengths. Germanium is 

commonly used to focus thermal radiation onto a focal plane array of infrared detectors [107]. 

 

Thermal imaging allows clinicians to examine human organs that are too dense for other imaging 

techniques to show. Only a few technologies are available on the research and commercial 

markets. Flir Systems is the primary designer and manufacturer of high-quality, expensive thermal 

imaging systems. High-quality cameras tend to cost more than equipment for other 

methodologies. Interpretation of images and erratic temperatures can be difficult to understand. 

Further, most cameras have an accuracy of  only ±2°C due to the noncontact methods. 

Thermography also can detect only surface temperatures and does not offer penetration depth. 

77.6.1  TECHNICAL SPECIFICATIONS 

In thermal imaging, the feedback of the camera is highly dependent on body temperature. Each 

person has a core body temperature that typically varies from 35.5°C to 37.7°C [53]. Thermal 

imaging uses two core principles: radiometry, or the measurement of radiation, and photometry, 

the measurement of visible radiation. In radiometry, the spectral radiant flux, , is the spectral 

radiant flux. The spectral flux is the power emitted, transferred, or received as radiation per 

wavelength interval, resulting in the integral [53]. The output, in watts, is expressed by this integral 

equation: 

 

 (7.10) 

  

 

Photometry measures the visible radiation of the system. Photometry’s relationship with radiometry 

weighs the spectral power with the normalized, spectral luminous efficacy of the standard 

observer,  [53, 108]. Luminous efficacy is the measure of the ability of radiation to produce a 

visual sensation [53] equating to: 

 

 (7.11) 

  

 is the luminous flux in lumens (lm). According to [53], radiance is the radiant flux at a point on the 

surface of the source or receptor. Both radiance and luminance are used substantially in both 

human and computer vision. By analyzing the radiometry of imaging systems, it allows focused 



www.manaraa.com

 

 81 

images to effectively measure radiation. In radiometry, the radiance of an object does not diminish 

with distance, as it does in spectroscopy. The radiance of an object is not affected by the distance 

between the object and its receptor in the absence of scattering and absorption [53]. More modern 

infrared cameras use a focal plane array of detectors to capture the image [107].  

 

Thermal radiation of skin originates from the epidermis and is independent of race; it depends only 

on the surface temperature [53]. Emissivity varies with wavelength. Skin emissivity is rather 

constant between 3 and 15 microns at a value of 0.975 ± 0.05 [54]. Figure 7.8 displays the steps 

in processing infrared thermal imaging for medical applications. 

In the latest research, the more robust tools that quantify inflammation and infection of a wound 

use thermal imaging to easily identify diabetic foot wounds [109]. Bharara et al. [109] have 

performed numerous studies that support the theories of in-home monitoring using temperature 

change and thermal technology. Bharara et al. [109] reported approximately fourfold to 10-fold 

reductions in pressure wounds for patients using home-based thermometry devices. There has 

been growing interest in simple digital thermometers, liquid-crystal-thermography technology, and 

the Spectrasole Pro 1000 system for quick diabetic-foot assessment [110]. Previous research has 

suggested that thermal imaging could facilitate the assessment of wounds and wound healing, but 

the industry and science lack standard thermal-imaging techniques and analysis to validate this 

methodology [109]. 
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The temperature difference between the wound and the surrounding environment depends on the 

size, shape, curvature, and eccentricity of the wound. Understanding the interruption in the skin 

matrix could lead to better understanding of how wounds form based on shear stress [109]. When 

a wound forms, excessive vertical and shear stress force on the edges disturb the skin matrix 

[109]. According to Bharara et al., [109] an objective parameter  that is, an index based on 

thermal profile  is necessary to  track wound healing over time using the Wound Inflammatory 

Index. Bharara et al. [109] have proposed a new tool for quantifying wound conditions using 

thermal imaging and wound size as inputs: 

 

(7.12) 

  

This equation uses the temperature difference ( , the area of the isotherm , and the area of 

the wound bed  to calculate the thermal index of the wound (TI). The calculations for Figure 7.9 

are currently performed manually to evaluate wound assessment. 

 

 

 

FIGURE 7.9: CALCULATION OF TI/WOUND INFLAMMATORY INDEX [14] AT BASELINE FOR THE TEST SUBJECT [109]. 

 

Thermometry is an innovative strategy to treat and manage wounds. This technique facilitates early 

diagnosis, surgical planning, and preventive actions. Thermography also offers fast, noninvasive, 

and safe examination of wounds. Table 7.1 shows the results from Bharara et al. [109] as a proof-

of-concept study for a wound healing trajectory. Bharara et al. [109] have created preliminary 

scoring methods to assess wounds on the skin’s surface.  
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TABLE 7.1: CALCULATION OF THERMAL INDEX/WOUND INFLAMMATORY INDEX RESULTS [109] 

Day Average Foot 
Temperature 

(°C) 

Wound Area 
(Pixels) - A 

Isotherm 
Area (Pixels) 

Wound 
Temperature 

(°C) 

WII Wound Area 
(L x B, cm2) 

0 37.28 20907.00 8216.00 36.39 -0.63 5.44 
7 36.56 13949.00 3158.00 35.17 -0.57 5.67 

14 38.24 4615.00 2701.00 38.00 -0.26 4.8 
21 37.87 1821.00 279.00 40.39 0.70 1.4 
35 36.78 1715.00 174.00 36.96 0.03 0.84 

 

Several studies have shown that foot temperature is an important parameter in assessing the state 

of an wound [111]. The most commonly used current method of monitoring foot temperature is the 

use of an infrared (IR) thermometer for self-inspection. This method is, however, manually intensive 

and prone to human error. An IR thermometer also relies on human judgment rather than 

automation. An IR thermometer also reads only one parameter, temperature, which can provide 

only so much information. The benefit of this methodology is that it allows for consistent home 

monitoring of a wound. By using thermography as a component of overall wound health, 

thermography could provide important insight into further understanding and analysis of wound 

health. 

77.7  SUMMARY 

Various predictive-modeling techniques exist. We explored types of models and ultimately settled 

on multiple linear regression, nonlinear regression, and neural networks. Based on the data, we 

believe these predictive modeling techniques provide the most consistent, robust, and accurate 

results. This chapter provides the theoretical understanding for the predictive modeling processes 

we use to analyze the data and produce the results in Chapter 9.  
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8 CHAPTER 8 WOUND DATA COLLECTION, 

PREPROCESSING 

CHAPTER 8 
Wound Data Collection, Preprocessing 

Chapter 8 focuses on data collection and both still and thermal photography to devise an accurate 

predictor of wound health and wound viability. The proposed research methodology was 

developed to contribute to the understanding of how various wound health characteristics impact 

the length of time and quality of chronic wounds in patients. The subsequent data was collected 

through two wound-care facilities: RMBC, a community hospital, and Vohra, a national wound-

care physician group. We compiled data in concert with all state and federal regulations involving 

each location’s Institutional Review Board (IRB) and HIPAA compliance, as well as each location’s 

nondisclosure agreements (NDAs). 

88.1  DATA COLLECTION 

RBMC provided both retrospective and living patient data for this study. Vohra provided most of 

the retrospective data. 

8.1.1  INSTITUTIONAL REVIEW BOARD 

At each institution and each hospital, the process differs for authorizing and complying with the 

state and federal privacy health laws. For RBMC, the process took approximately nine weeks. For 

Vohra, the process took approximately two weeks. Figure 8.1 diagrams the process of approval for 

both institutions. 

 

To pursue research at RBMC, we had to present the research plan to the IRB, which comprised 

nine individuals. The purpose of the presentation was to ensure the safety and privacy of patients 

involved. Along with the presentation to IRB, we had to develop an informed consent for patients if 
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they chose not to participate. This form was developed with the assistance and guidance of 

Northeastern University’s IRB. Once RMBC’s IRB approved the plan, the clinic’s legal department 

required an official educational-affiliation agreement to complete the approval process in Appendix 

B. This approval process allowed us to collect live patient data at RBMC’s Care Center.  

Retrospective data collection differs slightly from live data collection in that retrospective data 

collection allows those with large patient databases to easily remove patient identities and 

demographics. 

 

We sent Vohra, the retrospective data source a one-page proposal with a description of the 

research and a request for the desired data. Follow-up telephone calls further detailed the 

necessary criteria for selecting patients. Along with the telephone calls, we had to enter into a 

data-use agreement (Appendix B). 

 

88.1.1.1  Liv ing Human Data Col lect ion 

Figure 8.1 details the IRB process at the wound care facilities from which we received the patient 

data. Vohra physicians supplied us with the training and testing data to develop the predictive 

model. RBMC allowed us to collect on-site and retrospective data and to observe daily operations 

in the wound clinic. RBMC also supplied us with photographs of patient wounds from still and 

thermal imaging. Of the multiple wound care facilities we observed, RBMC was among the few that 

consistently photographed patient wound progress.  

 

With retrospective data, the data is a collection of numbers. Patients are not identified, and we 

received no personal information. With on-site patient data collection, however, pain is a reality. For 

four weeks, we observed the same group of 18 patients attend weekly visits to the wound care 

center to monitor and determine their wound health, hoping for change in size as small as 0.10 

cm. We observed and conversed with all patients who were willing to let us photograph their 

nonhealing wounds. Most patients suffered from neuropathy and could not feel their wounds. 
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FIGURE 8.1: IRB PROCESS FOR RBMC AND VOHRA 

88.2  DATA-MINING METHOD SELECTION 

We received data on 19,203 unique wounds, each wound having multiple records over time, from 

Vohra, and we received data on 18 unique wounds from the RBMC. A variety of statistical analyses 

were performed on the raw data to ensure a statistically accurate data cleaning of outliers and 

extreme cases. Figure 8.2 shows an overview of how the data was initially prepared. 
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FIGURE 8.2: DATA-PREPARATION METHODOLOGY 

 

Figure 8.3 displays the computational process of determining whether the data and each variable 

had a normal distribution. The purpose of this data mining was also to discover each variable’s 

best-fit data distribution. Furthermore, histograms, box plots, and scatter plots were used to 

determine the fit of each variable in preparation for data cleaning. 

 

The purpose of normalization is to show the variability of each variable relative to the other 

variables. The standard equation was used to normalize the data between zero and one, as given 

by:  

 

 

 (8.1) 
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FIGURE 8.3: INDEPENDENT VARIABLE-DATA PREPARATION 

88.3  DATA PREPROCESSING: STAGE I 

As Figure 8.2 and Figure 8.3 show, the preprocessing of the data included normalizing and 

cleaning the data set to prepare it for both regression and neural-network predictive modeling. 

Specifically, Matlab® was used to write small blocks of code to assist in the cleaning of the 

massive data set. Figure 8.4 shows a visualization of the process the data cleaning with Matlab® 

code (Appendix E and F). 

 

Box plots assisted in the elimination of outliers and extreme data points from the set of data. The 

box plot describes the location of the center of the data is, the spread of the data, and the 

departure from symmetry of the data. Furthermore, box plots identify data points  that is, outliers 

or extreme outliers  that deviate from the bulk of the data [112]. 
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Equations (8.2) and (8.3) show how we derived the lower and upper values for each variable to 

determine the ideal set of input parameters: 

 

 
(8.2) 

 

  

 

 

 

 
 (8.3) 

 

  

 

For each variable, we created box plots. We eliminated data based only on the box plot 

information for length 1, length 2, and depth because each wound data sample has a guaranteed 

value for each of these three variables (Figure 8.5, Figure 8.6, and Figure 8.10). Unlike length 1, 

length 2, and depth, the independent variables of undermining, granulation, yellow necrotic tissue, 

black necrotic tissue, and slough are percentages that represent what is occurring within the 

wound. Not every wound has the previously mentioned characteristics, which results in a value of 

zero. Due to this fact, we could not eliminate this data based on most values for each of these 

variables, including undermining, granulation, yellow necrotic tissue, black necrotic tissue, and 

slough. 

 

Similarly, certain wounds result from physical imbalances within the patient. One of those 

imbalances occurs because of the blood flow and circulation in the lower appendages. This 

measurement is recorded via a Doppler tool and measures the flow in both the right and the left 

lower appendage (Figure 8.7).  
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FIGURE 8.5: BOX PLOTS OF LENGTH 1  

 

 

 

 

FIGURE 8.6: BOX PLOTS OF LENGTH 2 
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(a) Left Doppler (b) Right Doppler 

  

FIGURE 8.7: BOX PLOTS OF LEFT AND RIGHT DOPPLER 

 

Figure 8.8 represents the box plots for both the albumin and prealbumin measurements of each 

wound. Albumin is a visceral protein that functions as a carrier protein to assist in maintaining 

oncotic pressure [113]. Clinicians use albumin and prealbumin as measures of the nutritional state 

of the wound and the patient based on the patient’s need for protein. Although albumin and 

prealbumin are good indicators of morbidity and mortality, some disagreement exists about 

whether they can be used as measures of nutritional status [114].  

 

Table 8.1 displays each variable and its box-plot properties. Table 8.1 and Table 8.2 show the 

lower and upper limits of each variable, which provide the values for establishing the threshold for 

each input parameters. This amalgamation of input parameters is the healed threshold for how we 

have defined a wound that is healed. In addition, the range between the upper and the lower 

quartiles is significant because these values define the upper limit to eliminate outliers and extreme 

values. Although we have calculated both the upper and the lower limits of the data, we use only 

the upper limits to eliminate the outliers and extreme values. The lower limits represent, within the 

context of the data and situation, a closed wound. Therefore, we did not eliminate them for the 

purpose of analysis because the wounds are considered closed.  
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(a) Prealbumin (b) Albumin 

FIGURE 8.8: BOX PLOTS OF PREALBUMIN AND ALBUMIN 

 

TABLE 8.1: SUMMARY OF BOX-PLOT STATISTICS OF INDEPENDENT VARIABLES 

Independent Variable Q1  Q3 Range Minimum Maximu

m

Length 1 0.50 2.50 2.0 0 56

Length 2 0.50 3.0 2.5 0 54 

Depth 0.10 0.20 0.10 0 4 

Undermining 0 0 0 0 7 

Granulation 0 100 100 0 100 

Yellow Necrotic 0 0 0 0 100 

Black Necrotic 0 100 100 0 100 

Slough 0 0 0 0 100 

Left Doppler Numerical 0 0 0 0 3 

Right Doppler _Numerical 0 0 0 0 3 

Prealbumin 0 0 0 0 145 

Albumin 0 0 0 0 33.3 

 

Table 8.2 focuses on the upper whisker, or maximum, because it represents the boundary 

between the included data and the outliers and extreme data points. Although we calculated the 

lower and upper whiskers for all independent variables, we eliminated outliers and extremes based 

on length 1, length 2, and depth because these measurements were present in every wound.  
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TABLE 8.2: COMPUTATION OF INDEPENDENT VARIABLES FOR LOWER AND UPPER WHISKERS OF BOX PLOTS 

Independent Variable Q1-R Lower 

Whisker  

Q3+R Upper 

Whisker  

Length 1 -1.5 0 4.5 4.5 

Length 2 -2 0 5.5 5.5 

Depth 0 0 0.313 0.313 

Undermining 0 0 0 0 

Granulation -100 0 200 100 

Yellow Necrotic 0 0 0 0 

Black Necrotic -100 0 200 100 

Slough 0 0 0 0 

Left Doppler Numerical 0 0 0 0 

Right Doppler Numerical 0 0 0 0 

Prealbumin 0 0 0 0 

Albumin 0 0 0 0 

 

Unlike the box plots in Figure 8.5 and Figure 8.6, the box plot for this figure depth was created 

using combined data from a neural network. In the receipt of the raw data, the clinician did not 

input some depth values into the electronic medical record to determine some of the missing 

values, we separated the data based on: 

 

 

 (8.4) 

  

 

This approach allowed the wounds to be classified based on their depth. The subneural-network 

analysis had was necessary for prediction of the missing depth values. Figure 8.9 displays the 

methodology of how the subneural network predicts the missing depth values. The ideal neural 

network has minimal average error for training data scoring and a value of nearly zero average error 

for validation data scoring. To prepare the data for input into the neural network, the data had to 

be partitioned into 70% (7,000 data points for training) and 30% (3,000 data points for validation) 

training and validation data, respectively. This partition was achieved by using random algorithms 

to select the 10,000 maximum number of inputs to train the network. To verify the accuracy of the 

neural network for the data set, we used multiple random algorithms to partition the same data 

[115]. 
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FIGURE 8.9: SUBNEURAL-NETWORK METHODOLOGY FOR MISSING DEPTH VALUES 

 

We designed and analyzed multiple neural networks to ensure the accuracy of the conclusions in 

Table 8.3. We tested the network’s accuracy against various combinations of parameter options 

and against various random algorithms for data partitioning. Table 8.3 displays the optimal 

combination of parameter values that produce minimal average error of training data and validation 

data [115].  

 

TABLE 8.3: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS 

Variables  Parameter/Options 

Number of input variables 2  Number of hidden layers 1 

Input variables Length_A 

Length_B 

 Number of nodes in hidden layer 1 3 

Output variable Depth  Number of epochs 3,000 

   Step size for gradient descent 0.02 

   Weight-change momentum 0.2 

   Error tolerance 0.001 

   Weight decay 0 

 

Table 8.4 provides the results of the neural-network analysis that provides the respective weights 

of each node within each hidden layer of the network. Similarly, it provides the weights for the 

output node, which is depth.  
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TABLE 8.4: INTERLAYER CONNECTIONS WEIGHTS 

  IInput Layer       

Hidden layer 1 Length 1 Length 2 Bias node  

Node 1 -4.763429826 -3.163800314 -1.083572488  

Node 2 -1.056294408 0.625808772 -0.25194046  

Node 3 0.565769301 -0.977301608 -0.589001043  

     

  HHidden Layer 1     

Output layer Node 1 Node 2 Node 3 Bias node 

Output node -3.47674292 -0.72515721 -0.478521953 -2.36592218 

 

Table 8.5 shows the quality and accuracy of the neural network and the amount of error within the 

training data scoring and how accurate the network is when tested against the validation data. To 

determine the accuracy of the model, we focus on the average error of the training and validation 

data scoring. The average error for training should be less than 5%. In this case, the average error 

is 0.26 %. The average error for validation data scoring should be nearly zero. In this case, the 

average error for validation data is 0.005%, or essentially zero (Table 8.5). This information 

supports the use of this network to predict the missing depth values for the remaining patient 

wounds.  

 

TABLE 8.5: TRAINING AND VALIDATION DATA-SCORING REPORT 

Training Data Scoring   Validation Data Scoring 

Total sum of squared 

errors 

RMS 

Error 

Average 

Error 

  Total sum of squared 

errors 

RMS 

Error 

Average 

Error 

308.21 0.21 0.0026   105.08 0.187 5.22E-05 

 

Table 8.6 provides a summary of statistics pertaining to the depth of the data set. It summarizes 

the statistics of the depth parameter for the combination of training and predicted data. 

 

TABLE 8.6: TRAINING AND VALIDATION DATA-SCORING REPORT 

Valid 

N 
Mean 

Mini

mu

m 

Maximum Q1 Q3 Range Q Range 
Standard 

deviation 

29085 0.179 0.00 4.000 0.100 0.206 4.000 0.106 0.139 
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Figure 8.10 represents the box plot of both the training data and the tested data to determine the 

outliers and extreme values based on the depth. Figure 8.10 is the final step in completing the data 

cleaning to determine the predicted time to heal. 

  

 

 

FIGURE 8.10: BOX PLOTS OF DEPTH AFTER PREDICTED VALUES 

88.4  GEOMETRICAL ANALYSIS 

At most wound clinics, clinicians measure wounds at the point of greatest width and maximum 

height perpendicular to the measured width [2]. To determine the geometric characteristics of 

various wounds, we developed an acquisition and analysis methodology that acquires, analyzes, 

and outputs the necessary wound information for eventual three-dimensional model importing. 

Figure 8.11 shows the methodology for both still- and thermal-image analysis. For still-image 

analysis, we used the National Institutes of Health (NIH)-sponsored ImageJ software [116]. For 

thermal-image analysis, we used the ExaminIR system from Flir Systems.  

 

The Java-based, NIH-sponsored, ImageJ image-processing-analysis software for scientific 

research assisted the image and geometrical analysis in acquiring the spline of the wound from the 

wound images. This analysis is necessary to determine the proper wound shape to import into 

Solidworks and ultimately build a three-dimensional model of the wound [117]. 
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ImageJ’s developers conceived the software to analyze problems in the life sciences. The 

software’s developers wanted it to remain accessible to newcomers and powerful enough for 

complex image analysis and processing. Because the software is open-sourced, anyone can 

contribute to improvements, ideas, and creation of plug-ins [118].  

 

 

 

FIGURE 8.11: IMAGE-ACQUISITION AND -ANALYSIS METHODOLOGY  

 

88.4.1  STILL-PHOTOGRAPHY ANALYSIS 

Still photography should be a principal tool for the tracking and progress of wound healing. 

Unfortunately, the photographing of wounds through the course of treatment is not a standard 
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practice. Therefore, we analyze and evaluate how photographing wounds can assist in the 

development of wound care and the improvement of wound tracking and progression.  

Figure 8.12a shows an example of the original wound image, and Figure 8.12b shows an example 

of the binary converted image with emphasis on the wound’s shape and size. The highlighted 

yellow area of Figure 8.12b is calculated with ImageJ and calibrated with the corresponding ruler in 

the photograph. Table 8.7 provides the parameters of the highlighted yellow area of the wound.  

 

  

 

(A) RGB IMAGE (B) BINARY IMAGE WITH SCALE 

FIGURE 8.12: PATIENT 11 IMAGE ANALYSIS 

Table 8.7 provides the quantitative geometrical information about the respective wound and the 

calculated respective wound surface area and the wound-bounding rectangle. Note the difference 

in value between the area and the calculated area of the wounding rectangle. Currently, clinics can 

measure and calculate using only the bounding rectangle. Every subsequent measurement and 

comparison uses the change in area of the bounded rectangle. 

 

TABLE 8.7: FIGURE 8.12 GEOMETRIC ANALYSIS RESULTS 

Area Mean Minimum 

(pixel value) 

Maximum 

(pixel value) 

Perimeter Bx By Width 

(bounding 

rectangle) 

Height 

(bounding 

rectangle) 

Bounding 

Rectangle 

Area 

3.037 81.883 29 122 20.135 3.948 3.477 5.259 1.692 8.898 

 

Table 8.8 provides reference information about the size of the image and how many pixels equal 

one centimeter. 
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TABLE 8.8: IMAGE STATISTICS 

Width (pixels) Width (cm.) Height (pixels) Height (cm.) Pixels/cm. 

857 1145 10.35 13.83 82.765 

 

Table 8.13 shows the wound boundary. The boundary of the wound was provided using both the 

Sobel and the Canny edge-detection algorithms. The purpose of using both algorithms is to 

compare the accuracy and precision of the edge detection. 

 

  

 

(A) SOBEL EDGE-DETECTION ALGORITHM (B) CANNY EDGE-DETECTION ALGORITHM 

FIGURE 8.13: PATIENT 11: WOUND EDGE  

Figure 8.14 provides another example of the image analysis of wound’s surface area, perimeter, 

and shape. Figure 8.14 shows a more traditionally shaped wound, representing nearly circular 

wounds with 90% granulation. Table 8.9 provides the geometrical analysis of the wound area from 

Figure 8.14. The product of the width and the height of the bounded rectangle is an approximated 

calculated area. In the situation of Patient 2, the error is approximately 43% (Figure 8.14). We 

include this error discrepancy to illustrate the difference between measuring the bounding 

rectangular box of a wound and measuring the surface area of the wound itself. 
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(A) (B) 

FIGURE 8.14: PATIENT 2: RGB IMAGE AND BINARY IMAGE WITH SCALE  

Table 8.9 and Table 8.10 provide the same information for other patients.  

 

TABLE 8.9: FIGURE 8.14 GEOMETRIC ANALYSIS RESULTS 

Area Mean Minimum 

(pixel 

value) 

Maximum 

(pixel 

value) 

Perimeter Bx By Width 

(bounding 

rectangle) 

Height 

(bounding 

rectangle) 

Bounding 

Rectangle 

Area 

11.438 0 0 0 1160.322 6.429 5.397 4.207 3.889 16.36 

 

TABLE 8.10: IMAGE STATISTICS 

Width (pixels) Width (cm.) Height (pixels) Height (cm.) Pixels/cm. 

463 16.81 622 12.51 37 

 

We used these imaging techniques for all patient photographs to compare them with the actual 

measurements. ImageJ assists us in determining the outline of the wound. Figure 8.15 and Figure 

8.16 show the results of using Matlab to determine the actual XY coordinates of the edge of the 

wound. These results are a combination of the Sobel and the Canny edge-detection algorithms 

[119]. We imported those points into Solidworks to create a spline of the wound and, ultimately, a 

three-dimensional, volumetric model of the wound. 

 

Similarly, Figure 8.15 shows the comparison between the Sobel and the Canny edge-detection 

algorithms for a patient wound. 
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(A) SOBEL EDGE-DETECTION ALGORITHM (B) CANNY EDGE-DETECTION ALGORITHM 

FIGURE 8.15: PATIENT 2: WOUND EDGE  

Figure 8.16 shows a matrix of the pixel coordinates of the edge from the wound of Patient 2. 

Figure 8.16 shows successive marks that indicate the edge of the boundary. Each mark indicates 

the location of a boundary pixel and provides the XY coordinates of each pixel that comprises the 

wound boundary. The XY coordinates allow us to import the location of each boundary pixel into 

Solidworks to create a three-dimensional model of the wound. 

 

 

 

FIGURE 8.16: PATIENT 2: WOUND-EDGE TWO-DIMENSIONAL MATRIX OF XY COORDINATES 
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Patient 3, with a severe 10-cm.-wide wound on the back of his calf, provides another example of 

image analysis. This individual has a history of chronic wound problems, is diabetic, and lacks 

proper nutrition. 

 

Figure 8.17, Table 8.11, and Table 8.12 show another patient example using image analysis.  

 

 

 

 

(A) RGB IMAGE (B) BINARY IMAGE WITH SCALE 

FIGURE 8.17: PATIENT 4: IMAGE ANALYSIS  

 

TABLE 8.11: FIGURE 8.12 GEOMETRIC ANALYSIS RESULTS 

Area Mean Minimum 

(pixel value) 

Maximum 

(pixel value) 

Perimeter Bx By Width 

(bounding 

rectangle) 

Height 

(bounding 

rectangle) 

16.035 125.516 125 142 34.195 0.288 0.185 10.126 2.840 

 

TABLE 8.12: IMAGE STATISTICS 

Width (pixels) Width (cm.) Height (pixels) Height (cm.) Pixels/cm. 

530 157 10.91 3.23 123.41 

 

Similarly, Figure 8.18, and Figure 8.19 represent the final wound boundary output for Patient 4. The 

respective spline in Figure 8.18 was imported into Solidworks  
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(A) SOBEL EDGE-DETECTION ALGORITHM (B) CANNY -ETECTION ALGORITHM 

FIGURE 8.18: PATIENT 4: WOUND EDGE  

 

 

  

 

 

FIGURE 8.19: PATIENT 4 FINAL WOUND OUTLINE ANALYZED IN MATLAB 

 

The image of Patient 4’s wound was analyzed to determine the XYZ pixel coordinates and 

imported into Solidworks to render a three-dimensional model of the wound. 

88.4.2  THERMAL-PHOTOGRAPHY ANALYSIS 

Thermal imaging and analysis were performed with a ThermaCAM S65 infrared camera from Flir 

Systems. The camera has a with a 38.5-micron lens and provides 38.5-micron/pixel resolution 

(Figure 8.20 and Appendix D). The accuracy of this camera is ±2°C or ±2% of the reading  a 

higher tolerance than we would have chosen. Because the average temperature difference 

between an ulceration and the surrounding environment is approximately ±2°C, we would have 

preferred a camera with a smaller tolerance deviation. The objective of using the ThermaCAM was 

to collect thermal images of wounds to track the temperature change over time. We measured the 

center of the wound’s temperature and used that measurement to compare changes over time. 

We photographed the patient’s wound approximately three times per visit over a three-week 
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period and averaged the temperature of the wound’s center. We collected the data on live patients 

rather than retrospective patients. 

 

  

(A) (B) 

  

(C) (D) 

FIGURE 8.20: FLIR THERMACAM S65 THERMAL-IMAGING SYSTEM 
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(a) RGB Image (b) Binary Image with Scale 

  

 

(C) WOUND THERMAL IMAGING 

  

FIGURE 8.21: PATIENT 15 IMAGE COMPILATION 
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Figure 8.21 documents the full image analysis of patient 15’s wounds through RGB image analysis, 

binary image analysis, and wound thermal imaging.  Table 8.13 provides the same image statistics 

as those for the previous patients. The addition to these geometric results is the inclusion of the 

wound temperature. 

  

TABLE 8.13: FIGURE 8. GEOMETRIC ANALYSIS RESULTS 

Area Mean Maximum 

(pixel 

value) 

Maximum 

(pixel 

value) 

Perimeter Bx By Width 

(bounding 

rectangle) 

Height 

(bounding 

rectangle) 

Thermal 

Temperature 

0.411 0 0 0 7.187 2.527 4.716 0.762 1.082 34.3˚C 

 

88.4.3  THREE-DIMENSIONAL CAD-MODEL DEVELOPMENT 

To create a three-dimensional CAD Model from a two-dimensional image, we had to develop the 

proper methodology to prepare the image for processing. That process included image 

manipulation from the RGB color space to the LAB color space. This slight modification is key in 

allowing the Sobel and Canny edge-detection algorithms to better detect the shape of the wound. 

Figure 8.22 shows the final input image to the three-dimensional CAD system. Figure 8.22 allows 

us to determine the pixel-to-centimeter relationship, allowing us to covert from pixels back to 

centimeters in preparation for point-cloud importing.  

 

  

 

(A) BINARY IMAGE WITH BOUNDARY (B) CROPPED AND FILLED WOUND 

FIGURE 8.22: PATIENT 2 PIXEL-TO-CENTIMETER CONVERSION 
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This methodology determines the pixel XY coordinates of the boundary of the wound, eliminates 

duplicates, and cleans the collection of XY coordinates in preparation for Solidworks data 

importing. Cleaning of this data is of the utmost importance because, in many instances, the 

boundaries are so complex, that single pixels are on or nearly on top of one another. That situation 

is acceptable for analysis of a two-dimensional matrix; however, with three-dimensional geometric 

processing, it creates self-intersecting splines, which prevent two-dimensional-to-three-

dimensional geometry. When the data is clean, the methodology exports the table of XYZ points 

(Table 8.14). This text file allows the three-dimensional CAD system to construct a series of XYZ 

points to construct the desired shape using point-cloud theory [120, 121].  

 

The XYZ coordinates in Table 8.14 are then converted to centimeters, which allows proper 

importing of the three-dimensional system. Solidworks has a built-in ScanTo3D, which allows us to 

import a series of cloud points to create a solid three-dimensional model. ScanTo3D performs a 

series of reverse-CAD functions that creates a three-dimensional model from a two-dimensional 

image [120]. Figure 8.23 shows the modified ScanTo3D methodology and details the process of 

extracting the boundary points of the wound and importing them into Solidworks. Although a 

variety of ways exist to import XYZ coordinates into Solidworks, one method of inserting a curve 

through XYZ coordinates does not work for boundary creation. When inserting a curve of XYZ 

coordinates in Solidworks, the order of the boundary points causes system instability.  

 

TABLE 8.14: GEOMETRIC ANALYSIS RESULTS 

XX (Pixel )  YY (Pixel )  ZZ (Pixel )  

150 756 0 

151 651 0 

151 670 0 

151 671 0 

168 564 0 

168 565 0 

 

With edge-detection algorithms, such as the Sobel or Canny, the boundary-trace algorithms 

outlines an object (Figure 8.24). The boundary-trace algorithm determines the initial starting point, 

Pixel P, with an assigned start direction that is, northeast. From there, the algorithm checks the 

surrounding seven remaining pixels and records the XY coordinates of each nonempty pixel. 

Although the boundary-trace and edge-detection algorithms acquire the boundary of object, XY 
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coordinates are repeated due to the innate characteristics of edge- and boundary-detection 

methods. 

 

 

 

Figure 8.23: ScanTo3D Methodology 
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FIGURE 8.24: BOUNDARY-TRACE PROCESS 

 

88.4.3.1  Calculat ing Wound Volume Through Three-Dimensional Model ing 

Using the methodology developed in Figure 8.23, we created multiple three-dimensional models of 

wounds over time. This time-varying analysis allows us to see the change in mass, volume, and 

surface area over an observed period.  

 

Using Patient 11, we have documented the wound over a 28-day period.  

 

TABLE 8.15: PATIENT 11 HUMAN WOUND MEASUREMENTS 

Day Length 1 (cm.) Length 2 (cm.) Depth (cm.) Volume (cm.3) Surface Area (cm.2) 
     
     

     
     
     

 

Using the imaging techniques in Figure 8.11, we compared the calculated measure of surface area 

based on the measurements in Table 8.15 and the calculated wound properties based on image 

analysis (Table 8.16). 

 

TABLE 8.16: PATIENT 11 SOLIDWORKS WOUND MEASUREMENTS 

Day Length 1 Length 2 Depth Volume Surface Area 
 6.35 1 0.1 0.18 6.79 

 4.74 1 0.089 0.13 5.32 
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One of the necessary assumptions pertaining to the wound healing modeling is that the shape of 

the wound throughout the course of healing does not drastically change the shape and cross-

section of the wound. Thus, we assume that the reduction in size proportionally is based on the 

dimensions of the wound boundary. The purpose of the inclusion of Solidworks was to show the 

measurement difference between human wound measurements and computerized measurements. 

Through Solidworks and image analysis, we were able to acquire a more accurate measurement of 

the size of the wound, including surface area and volume. This feature enabled us to better monitor 

the change in wound size over time. Figure 8.25 shows a Solidworks model of a patients’ 

complex-shaped wound.  

 

 

(A) Isometric View 

 

 

(B) Top View 

 

 

(C) Side View 

 

FIGURE 8.25: VARIOUS VIEWS OF PATIENT 11’S WOUND SHAPE AND BOUNDARY 
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88.5  DATA PREPROCESSING: STAGE I I  

During The second stage of data processing, we used only those wounds for which we had 

retrospective data for more than five visits  that is, more than approximately 40 days. This data 

sorting and cleaning guaranteed that we could build an accurate and robust predictive model. The 

purpose of the second stage was to categorize wounds based on their aspect ratio during the 

patient’s initial visit. Equation (8.5) yields the aspect ratio: 

 

(8.5) 

  

 

The aspect ratio represents the shape of the wound. For example, if the aspect ratio is 1-to-1, the 

shape of the wound is most likely circular. If it is 3-to-1, the aspect ratio is more elliptical in shape. 

We hypothesized that the difference in the wound shape results in different healing patterns and 

wound behavior.  

 

Based on the aspect ratio, the wound and all of its subsequent measurements were grouped into 

three groups of smaller data sets:  

 

(8.6) 

 

(8.7) 

 

(8.8) 

   

 

Before building the models, we needed to determine whether we could achieve the same accuracy 

and precision using calculated inputs rather than raw inputs to the algorithm as predictive 

variables. In other words, we needed to determine whether volume, the calculated input; length 1; 

length 2; and depth, the raw inputs, differed in their output accuracy. Unfortunately, we discovered 

that the small depth measurements drastically skewed the calculated volume. Using volume as an 

input rather than the raw inputs caused the algorithms to be less accurate in their predictive 

capabilities. Equation (8.9) illustrates this problem. 
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(8.9) 

 

  

This equation confirmed that we required raw, independent variables as variable. To verify the 

hypothesis, we graphed a sample of data from each aspect-ratio group in Figure 8.26 to Figure 

8.41. Each aspect ratio revealed different wound-healing characteristics based on volume. Figure 

8.26 and Figure 8.27 show the wounds with an aspect ratio of less than 1 and show a distinctive 

pattern and behavior of increasing wound volume before decreasing wound volume. This result 

differs from that in Figure 8.4 and Figure 8.35, in which wound volume seems to dramatically 

decrease over time, as opposed to what occurs with wounds having an aspect ratio of greater 

than 2 (Figure 8.41). This category of wounds showed a steady decrease in volume over time but a 

smaller gap between starting volume and ending volume. This phenomenon appears to be unique 

to wounds with an aspect ratio of greater than 2 as opposed to those wounds with an aspect ratio 

of less than 2. 
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88.5.1  DETERMINATION OF HEALED THRESHOLD 

Because we categorized the variables based on aspect ratio, we have produced three neural-

network models. The development of a theoretical, predictive model means that a difference exists 

between ideal and actual wound-healing parameters. Wound-care physicians consider a wound 

healed when the wound measures 0 cm. in length, width, and depth. Given that information, we 

never saw a 100%-healed wound in the data we received.  

 

For the theoretical model, we have developed statistically supported assumptions that the 

determined healed threshold is based on the lower or upper limit of the respective input variable 

box plots. For example, if the input parameter is volume, we assume that the 25% percentile is 

healed. Similarly, if the input parameter is granulation, we would use the upper limit, 75% as the 

healed, or ideal, parameter. We repeated this process for each input variable and developed an 

ideal set of input variables. We then fed this ideal set of inputs into the designed neural network, 

which output a numerical value as time to heal. This single output, rather than a measurement of 0 

cm. in length, width, and depth, represents a wound’s stage in the healing process. We have 

observed, hypothesized, and supported the theory that a healing wound has asymptotic 

properties, and, as the wound heals, its asymptotic curve will approach the value of zero. 

However, Figure 8.44 shows a graph of time versus wound size (generically) approaching an 

asymptote of zero. One of the primary issues with using a measurement of 0 x 0 x 0 cm. is that the 

asymptote may take a long time to reach zero or may never reach zero. 
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FIGURE 8.44: WOUND-HEALING TRAJECTORY APPROACHING AN ASYMPTOTE OF 0 

 

88.5.1.1  Aspect Rat io of Less Than 1: Volume 

To design and develop a model using volume calculations, we performed similar data cleaning 

based on the volumetric parameter. We eliminated outliers based on the upper whisker. We also 

used the box plot in Figure 8.45 to determine the lower quartile value for the ideal data set. 
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FIGURE 8.45: VOLUME BOX PLOT FOR AN ASPECT RATIO OF 1 

Table 8.17 gives the numeric values of the lower and upper quartiles from the preceding box plot. 

 

TABLE 8.17: COMPUTATION OF INDEPENDENT VARIABLES FOR LOWER AND UPPER WHISKERS OF BOX PLOTS 

Independent Variable Lower Quartile Upper Quartile 

Volume 0.0375 0.84 

Granulation Tissue 0 100

 

Using the lower or upper limits of the box plots to determine the threshold of healed versus not 

healed wounds assisted us in deciding which input variables of the network were relevant. The two 

input variables deemed relevant showed variability between their 25th and 75th quartiles and was 

the calculated volume of the wound and granulation tissue.  
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TABLE 8.18: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS 

Variables  Parameter/Options 

Number of input 

variables 

2  Number of hidden layers 1 

Input variables Volume, granulation  Number of nodes in Hidden 

layer 1 

1 

Output variable Time remaining  Number of epochs 7,000 

   Step size for gradient 

descent 

0.001 

   Weight change momentum 0.01 

   Error tolerance 0.001 

   Weight decay 0 

 

We tested and compared the theory by developing two neural-network models. The first model 

contained all independent variables, including volume, granulation, yellow necrotic tissue, slough, 

right Doppler reading, prealbumin, and albumin. The second model contained just two 

independent variables: volume and granulation. The difference in determining the threshold for time 

to heal was virtually equal. The first model produced a threshold value of 27.47. Table 8.18 shows 

the parameters of the first neural-network model, including the values for the hidden layers of the 

first neural-network model for both the inputs and the output. 

 

TABLE 8.19: NEURAL-NETWORK PARAMETERS, ASPECT RATIO LESS THAN 1 

  

Input Layer 

  

Hidden Layer 1 Volume Granulation Bias node 

Node # 1 -2.31343465 0.179825194 -0.497878206 

    

    

 Hidden Layer 1  

Output Layer Node 1 Bias Node  

Output Node -1.473236968 -0.198861936  

 

Table 8.20 presents the results based on the training and validation scoring report. The average 

error using volume and granulation as the independent inputs resulted in ±0.026 days. 



www.manaraa.com

 

 138 

 

TABLE 8.20: TRAINING- AND VALIDATION-DATA SCORING REPORT 

Training-Data Scoring   Validation-Data Scoring 

Total sum of squared 

errors 

RMS 

Error 

Average 

Error 

  Total sum of squared 

errors 

RMS 

Error 

Average 

Error 

139,660.7864 23.827 0.023   73096.16 26.3847 0.02645 

 

Based on the information from the neural network and using the lower quartile of the volume 

variable and the upper quartile value of granulation, the predicated value of time to heal  returned a 

predicted value of 27.96, or 28 days. 

 

88.5.1.2  Aspect Rat io of Less Than 1: Length 1, Length 2, and Depth 

Similarly, we produced a neural-network model to determine whether we could improve the 

accuracy of the model using the individual wound characteristics rather than a calculated input, 

such as volume. Table 8.21 to Table 8.24 provide the details of this revised neural-network model 

for the individual and calculated inputs. By using more independent input variables, we have 

lowered the number of hidden layers and the number of epochs are fewer than those of the 

previous model in Table 8.17 through Table 8.20. However, the most noticeable difference 

between the two models is the accuracy of the validation data. The earlier model had an average 

error of ±0.26 days, whereas the model in Table 8.21 and Table, using more independent 

variables, returns an average error of ±0.34 days. This discrepancy indicates that a neural-network 

model may be more reliable and robust when it uses raw independent variables, such as Length 1, 

Length 2, and depth, rather than a calculated independent variable, such as volume. The predicted 

healed threshold for this model was calculated at 28.858 days. 

 

TABLE 8.21: COMPUTATION OF INDEPENDENT VARIABLES FOR LOWER AND UPPER WHISKERS OF BOX PLOTS 

Independent Variable Lower Quartile Upper Quartile 

Length 1 0.50 2.0 

Length 2 0.60 2.4 

Depth 0.10 0.20 

Granulation tissue 0 100 
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TABLE 8.22: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS 

Variables  Parameter/Options 

Number of input 

variables 

4  Number of hidden layers 1 

Input variables Length 1, Length 

2, Depth, 

Granulation 

 Number of nodes in Hidden 

Layer 1 

3 

Output variable Time remaining  Number of epochs 100 

   Step size for gradient 

descent 

0.001 

   Weight change momentum 0.1 

   Error tolerance 0.007 

   Weight decay 0 

 

TABLE 8.23: NEURAL-NETWORK PARAMETERS, ASPECT RATIO OF LESS THAN 1 

Input Layer 

Hidden Layer  1 Length 1 Length 2 Depth Granulation Bias Node  

Node 1 0.126943 -1.20982 -1.785782 0.8097 0.042952  

Node 2 -0.8225 0.7417 0.03296 0.8035 0.49139  

Node 3 1.06202 -0.9927 -0.5586 -0.2470 0.43752  

       

Hidden Layer 1  

 

Output Layer  Node 1 Node 2 Node 3 Bias Node  

Output Node  -0.699716628 0.249217775 -0.8221 -0.19055  

 

TABLE 8.24: TRAINING- AND VALIDATION-DATA SCORING REPORT 

Training Data Scoring   Validation Data Scoring 

Total sum of squared 

errors 

RMS 

Error 

Average 

Error 

  Total sum of squared 

errors 

RMS 

Error 

Average 

Error 

137963.8469 23.6816 0.5239   72217.08746 26.2256 0.03359 

  

The predicted value for the threshold of time is 28.858 days. 
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88.5.1.3  Aspect Rat io of Greater Than 1 and Less Than 2: Volume 

Similar to the method described in Section 8.5.1.1, the method in this section the same with the 

exception of a different set of testing data. Figure 8.46, Table 8.25, and Table 8.26 are the 

parameters for the neural-network model for Group 2. 

 

 

 

FIGURE 8.46: VOLUME BOX PLOT FOR ASPECT RATIO OF 2 

 

 

TABLE 8.25: COMPUTATION OF INDEPENDENT VARIABLES FOR LOWER AND UPPER WHISKERS OF BOX PLOTS 

Independent Variable Lower Quartile Upper Quartile 

Volume 0.035833 0.4641 

Granulation tissue 0 100 

Yellow necrotic 0 10 
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TABLE 8.26: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS, FOR AN ASPECT RATIO 

GREATER THAN 1 AND LESS THAN 2 

Variables  Parameter/Options 

Number of input 

variables 

2  Number of  hidden layers 2 

Input variables Volume, granulation, 

Yellow necrotic  

 Number of nodes in Hidden 

Layer 1 

1 

   # Nodes in HiddenLayer-1 1 

Output variable Time remaining  Number of epochs 6500 

   Step size for gradient 

descent 

0.001 

   Weight-change momentum 0.02 

   Error tolerance 0.001 

   Weight decay 0 

 

Table 8.27 is the neural network parameters for Group 2. Similarly, Table 8.27 states the numerical 

values of input and output hidden layer nodes. 

 

TABLE 8.27: TRAINING- AND VALIDATION-DATA SCORING REPORT 

Training-Data Scoring   Validation-Data Scoring 

Total sum of squared errors RMS 

Error 

   Total sum of squared errors RMS Error Average Error 

166836.5852 23.66 0.025   76008.91744 24.368 0.0126 
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TABLE 8.28: NEURAL-NETWORK PARAMETERS, ASPECT RATIO OF GREATER THAN 1 AND LESS THAN 2 

  

Input Layer 

   

Hidden Layer 1 Volume Granulation Yellow Necrotic Bias Node 

Node 1 -4.784279092 -0.41192969 -1.027211039 0.677571236 

     

     

 Hidden Layer 1   

Output Layer Node 1 Bias Node   

Node 1 -29.84249145 12.57158369   

     

     

 Hidden Layer 2   

Output Layer Node 1 Bias Node   

Output Node -0.690697574 -0.54806653   

 

The predicted value for the threshold of time is 33.118 days. 

88.5.1.4  Aspect Rat io Greater Than 1 and Less Than 2: Length 1, Length 2, Depth 

Unlike the neural network model presented in Section 8.5.1.3, figure, Figure 8.48, and Figure 8.49 

and tables 8.Table 8.29, Table 8.30, and 8.31 describe the neural-network model using length 1, 

length 2, depth, and granulation, rather than volume, as the inputs. 
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FIGURE 8.47: LENGTH 1 BOX PLOT FOR ASPECT RATIO GREATER THAN 1 AND LESS THAN 2 

 

 

 

FIGURE 8.48: LENGTH 2 BOX PLOT FOR  ASPECT RATIO GREATER THAN 1 AND LESS THAN 2 
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FIGURE 8.49: DEPTH BOX PLOT FOR ASPECT RATIO OF GREATER THAN 1 AND LESS THAN 2 

TABLE 8.29: COMPUTATION OF INDEPENDENT VARIABLES FOR LOWER AND UPPER WHISKERS OF BOX PLOTS 

Independent Variable Lower Quartile Upper Quartile 

Length 1 0.60 1.65 

Length 2 0.60 1.80 

Depth 0.10 0.20 

Granulation tissue 0 100 

 

TABLE 8.30: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS 

Variables  Parameter/Options 

Number of input 

variables 

4  Number of hidden layers 1 

Input Variables Length 1, Length 2, 

Depth, Granulation 

 # Nodes in HiddenLayer-1 10 

Output Variable Time Remaining  # Epochs 800 

   Step size for gradient 

descent 

0.10 

   Weight change momentum 0.60 

   Error tolerance 0.01 
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   Weight decay 0 

 

The “healed threshold” when the 1 < aspect ratio < 2 with four independent variables is 32.32 

days. 

 

TABLE 8.31: TRAINING AND VALIDATION DATA SCORING REPORT 

Training Data Scoring   Validation Data Scoring 

Total sum of squared 

errors

RMS 

Error

Average 

Error

  Total sum of squared 

errors

RMS 

Error

Average 

Error

158528.8208 23.06460 0.20083   76484.559 24.4445 0.01695 

 

88.5.1.5  Aspect Rat io > 2: Volume 

Similarly, Figure 8.50, Table 8.32, Table 8.33, Table 8.34, and Table 8.35 are the neural network 

model parameters and output that describe the model specific to Group 3 using volume, 

granulation tissue, and yellow necrotic tissue as inputs.  

 

 

 

FIGURE 8.50: VOLUME BOX PLOT FOR ASPECT RATIO=3 
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TABLE 8.32: COMPUTATION OF INDEPENDENT VARIABLES FOR LOWER AND UPPER WHISKERS OF BOX PLOTS 

Independent Variable Lower Quartile Upper Quartile 

Volume 0.0320 0.3325 

Granulation Tissue 0 100 

Yellow Necrotic 0 10 

 

 

TABLE 8.33: NEURAL NETWORK PREDICTION VARIABLES AND PARAMETERS, 1 < ASPECT RATIO < 2 

Variables  Parameter/Options 

# Input Variables 2  # Hidden layers 2 

Input Variables Volume, Granulation, 

Yellow Necrotic  

 # Nodes in HiddenLayer-1 1 

   # Nodes in HiddenLayer-1 1 

Output Variable Time Remaining  # Epochs 365 

   Step size for gradient 

descent 

0.001 

   Weight change momentum 0 

   Error tolerance 0.001 

   Weight decay 0 
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TABLE 8.34: NEURAL NETWORK PARAMETERS, 1 < ASPECT RATIO < 2 

  

Input Layer 

   

Hidden Layer # 1 Volume Granulation Yellow Necrotic Bias Node 

Node # 1 -0.990118719 -0.720849937 -0.121392742 -0.348850913 

     

     

 Hidden Layer # 1   

Output Layer Node # 1 Bias Node   

Node #1 1.710329786 3.805476422   

     

     

 Hidden Layer # 2   

Output Layer Node # 1 Bias Node   

Output Node -0.658233027 0.041009775   

 

Table 8.35 is the neural network training and validation data outputs for aspect ratio Group 3. The 

predicted value for the threshold of Time is 29.97 days. 

 

 

TABLE 8.35: TRAINING AND VALIDATION DATA SCORING REPORT 

Training Data Scoring   Validation Data Scoring 

Total sum of squared 

errors 

RMS Error Average 

Error 

  Total sum of squared 

errors 

RMS 

Error 

Average 

Error 

38404.54498 25.73222352 -0.50   12382.60388 22.255 0.013 

 

88.5.1.6  Aspect Rat io > 2: Length 1, Length 2, Depth 

Similar to the previous box plots, Figure 8.51, Figure 8.52, and Figure 8.53 correlate to numerical 

data in Table 8.36 regarding the ideal set of wound parameter values. Additionally, Table 8.37 and 

Table 8.38 are the parameters for the neural network and the respective hidden layer node values. 
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FIGURE 8.51: LENGTH 1 BOX PLOT FOR ASPECT RATIO > 2 

 

 

 

FIGURE 8.52: LENGTH 2 BOX PLOT FOR ASPECT RATIO > 2 
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FIGURE 8.53: DEPTH BOX PLOT FOR ASPECT RATIO OF GREATER THAN 2 

 

TABLE 8.36: COMPUTATION OF INDEPENDENT VARIABLES FOR LOWER AND UPPER WHISKERS OF BOX PLOTS 

Independent Variable Lower Quartile Upper Quartile 

Length 1 0.50 1.8 

Length 2 0.50 1.1 

Depth 0.1138 0.2015 

Granulation tissue 0 100 
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TABLE 8.37: NEURAL NETWORK PREDICTION VARIABLES AND PARAMETERS 

Variables  Parameters/Options 

Number of input variables 4  Number of hidden layers 1 

Input variables Length 1, Length 2, 

depth, granulation 

 Number of nodes in Hidden 

Layer 1 

11 

Output variable Time remaining  Number of epochs 8000 

   Step size for gradient descent 0.36 

   Weight change momentum 1 

   Error tolerance 0.001 

   Weight decay 0 

 

The healed threshold, when the aspect ratio is greater than 2, with four independent variables is 

12.27 days. 

 

TABLE 8.38: TRAINING- AND VALIDATION-DATA SCORING REPORT 

Training Data Scoring   Validation Data Scoring 

Total sum of squared 

errors 

RMS 

error 

Average 

error 

  Total sum of squared 

errors 

RMS 

error 

Average 

error 

5195.663598 9.464692 2.026675   29648.30695 34.43737 0.00669 

 

88.6  SUMMARY 

Table 8.39 presents a summary of the predicted threshold to calculate an estimated time to heal 

using volume.  

 

TABLE 8.39: SUMMARY OF PREDICTED THRESHOLD VALUES (DAYS) TO CALCULATE TIME TO HEAL 

AAspect Rat io of 

Less Than 1 

  AAspect Rat io of 1 to 2   AAspect Rat io of 

Less Than 2 

27.96  33.12  29.97 

 

Table 8.40 presents a summary of the predicted threshold to calculate an estimated time to heal 

using Length 1, Length 2, and depth.  
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TABLE 8.40: SUMMARY OF PREDICTED THRESHOLD VALUES (DAYS) TO CALCULATE TIME TO HEAL 

AAspect Rat io of Less 

Than 1 

  AAspect Rat io of 1 to 2   AAspect Rat io of Less 

Than 2 

28.858  32.32  12.27 

 

Although the corresponding values of Table 8.39 and Table 8.40 are similar, the major difference is 

in the context of the algorithm. We have concluded that the behavior of the algorithms using 

volume as an input  that is, the calculated input  does not accurately reflect the change in time 

to heal. We attribute this inaccuracy to the large numerical value difference between the depth 

variable and the length 1 and length 2 variables. In other words, the depth variable is smaller than 

the length variables. 
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9 CHAPTER 9 WOUND HEALING PREDICTIVE MODEL 

CHAPTER 9 
Wound-Healing Predictive Model 

We now extend and apply the chosen modeling techniques of Chapter 7 to the healing statistical 

prediction model. 

 

We have multiple predictive models for the data to compare and contrast the results and accuracy. 

We focused on nonlinear regression and neural networks. We pursued other regression models, 

such as multiple linear-regression predictive models, but the behavior of the data was too complex 

for linear regression. However, linear regression is a common predictive-modeling technique. As a 

comparison to nonlinear methods, we included the results. 

99.1  MULTIPLE LINEAR REGRESSION 

We developed one model using multiple linear regression. This model used the same predictive 

variables as the neural-network models. We developed the linear-regression model simply to 

compare the reliability of the linear-regression algorithm and how the number of predictor variables 

impacts the final linear algorithm.  

 

The first regression model, including predictor variables Length 1, Length 2, depth, and 

granulation, is given by:  

 

 (9.1) 

 

Due to the complexity of the data, the behavior of the data is nonlinear. According to the model 

feedback, the linear-regression model does not fit the data well based on the statistics of model 

(Table 9.1).  

 



www.manaraa.com

 

 154 

TABLE 9.1: STATISTICS OF MULTIPLE LINEAR-REGRESSION MODEL (FOUR DEGREES OF FREEDOM) 

  VValue 

RResidual dF 597 

RR-squared 0.036 

SStandard deviat ion est imate 23.88 

RResidual SS 340305.3438 

 

Using the R2 statistic, we see that the data is not a good fit for a linear regression model. The 

average error for this model is approximately four days for the validation data. To determine the fit 

of the data, we evaluated the adjusted R2 value and Mallow’s Cp. In this model, , and 

 reflecting a poor fit to the data. 

 

TABLE 9.2: TRAINING- AND VALIDATION-DATA SCORING REPORT, MULTIPLE LINEAR REGRESSION 

(FOUR DEGREES OF FREEDOM) 

Training Data Scoring   Validation Data Scoring 

Total sum of 

squared errors 

RMS Error Average 

Error 

  Total sum of squared 

errors 

RMS 

Error 

Average 

Error 

340305.35 23.78 0.00   163820.42 25.20 3.78 

 

99.2  NONLINEAR REGRESSION: SURVIVAL ANALYSIS 

We employed the Cox regression method, which is commonly used to represent the amount of 

time to an event and, in this case, represents the time to heal. The Cox regression can 

accommodate both discrete and continuous measures of event times [122]. Cox regression 

models affect the covariates of the hazard rate but leave the baseline hazard rate, allowing us to 

evaluate the model when all the predictors are zero [123].  

 

Using IBM’s SPSS predictive analytics software, we modeled the data using Cox regression to 

determine a better predictive model than linear regression or regression trees. We developed two 

Cox regression models. The first model included all of the available covariates. The second model 

included the most common wound measurements across wound clinics. 

 

Equation (9.2) is the Cox predictive model incorporating all the predictor variables. However, not 

every hospital and clinic collects this information. For a variety of reasons, there appears to be a 
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discrepancy in how to judge certain wound characteristics, such as the percentage of black or 

yellow necrotic tissue. 

 

 

 
 (9.2) 

Figure 9.1 through Figure 9.5 display the survival plots that result from survival analysis. Figure 9.1 

shows the data when all of the predictors are at their mean values and the aspect ratios are the 

reference categories. The purpose of using the means of the predictor variables is to see on 

average how many wounds heal at a given time. When all predictor variables are average, a small 

percentage of people are healed within 30 days of obtaining treatment at a wound clinic (Figure 

9.1). For chronic, nonhealing wounds, this reflection supports the theory that chronic wound 

healing takes a longer time to heal. 

 

Figure 9.5 displays the same general characteristics of the data except it separates the data 

thereby aspect ratios. Figure 9.5 shows that the behavior of data with aspect ratios of 1 and 2 

clearly differ from each other (p=0.000), whereas the data in aspect ratios 2 and 3 are more similar 

in behavior (p=0.237). Table 9.3 shows the covariate means. 

 

TABLE 9.3: COVARIATE MEANS 

  MMean 

LLength 1 1.370 

LLength 2 1.602 

DDepth 0.162 

UUndermining 0.003 

GGranulat ion 51.064 

YYel low Necrot ic Tissue 12.266 

BBlack Necrot ic Tissue 22.898 

SSlough 7.833 

 

The focus of the nonlinear regression predictive model is to show the difference between linear, 

nonlinear, and neural-network modeling. Cox regression, simply a function of the baseline 

cumulative hazard, provides the ability to show the effect of time in a nonlinear format. Unlike 

neural networks, Cox regression outputs a respective nonlinear mathematical equation. 

Furthermore, we can evaluate the algorithm with only the baseline cumulative hazard and no 

predictors in the model. So, when all the predictor variables are zero, the Cox regression function 
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is equal to the baseline cumulative hazard. Unlike linear regression, in which the intercept is a fixed 

number, the intercept of the Cox regression is the baseline hazard function. Figure 9.6 shows the 

baseline cumulative hazard function as a curve that displays healing purely from the perspective of 

passing time. If the predictor variables have any effect on the model, including them in addition to 

the hazard function will shift the curve. If the predictor variables have little impact, the final Cox 

regression model will appear similar to the baseline hazard function. These graphs represent the 

percentage of wounds that are healed at a given time after the wound’s initial treatment. 
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FIGURE 9.5: SURVIVAL FUNCTION DIFFERENTIATED BY ASPECT RATIOS 
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To properly calculate the Cox regression, we need to include the value of the baseline cumulative 

hazard, , at time t. Table 9.5 is the survival table, which shows the value of  at every 

recognized time value. The survival column in Table 9.5 represents the percentage of wounds with 

average values of the predictor variables that have survived by time t that corresponds to the plot 

in Figure 9.1. This is the percentage of people of 100% who have survived up to the end of time 

interval t. This analysis indicates that chronic wounds take weeks and months to heal rather than 

days and reaffirms the findings in literature. The current study validates the challenge of predicting 

the time until chronic, nonhealing wound closure. 

 

To determine the validity of the Cox regression model, we analyzed a number of factors that are 

associated with the quality of Cox regression output. Among these factors, the chi-square statistic 

and its significant level represent the probability of obtaining the chi-square statistic (366.016) given 

that the null hypothesis is true (Table 9.4). In the current case, the model is statistically significant 

because the p-value is less than 0.000. 

 

TABLE 9.4: OMNIBUS TESTS OF MODEL COEFFICIENTS 

--2 Log 

Likel ihood 
OOveral l  (score) 

CChange From 

Previous Step 

CChange From 

Previous Block 

 
Chi-square df Sig. 

Chi-

square 
df Sig. 

Chi-

square 
df Sig. 

7368.974 366.016 8 .000 404.385 8 .000 404.385 8 .000 

 

Each predictor variable in the equation has corresponding statistics to determine their relevance 

and impact on the final regression equation. Cox regression predictor variables have six pertinent 

statistics that help describe their relevance to the equation (Table 9.6). B predicts the dependent 

variable and the independent variable, and Exp(B) predicts the odds ratio for the predictors. Table 

9.7 provides more details on these statistics. SE is the standard error associated with the algorithm 

coefficients. We use the standard error to test whether the parameters significantly differ from zero. 

Similarly, the Wald and significance values provide the Wald chi-square value and two-tailed p-

value. The Wald statistic tests the null hypothesis.  The significant value is the p-value that 

determines whether those variables are statistically significant. The p-value should be less than 

alpha  that is, 0.05. Through the analysis, we find that the undermining, granulation, yellow and 

black necrotic tissue, and slough values all have a p-value greater than 0.05. Thus, these 

coefficients are not statistically relevant to the regression algorithm. 
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TABLE 9.5: SURVIVAL TABLE 

TTime BBasel ine Cumulat ive 

Hazard 

AAt Mean of Covar iates 
SSurvival SSE CCum 

Hazard 00 0.002 1.000 0.000 0.000 
33 0.006 0.999 0.000 0.001 
44 0.007 0.999 0.000 0.001 
55 0.008 0.999 0.000 0.001 
66 0.017 0.998 0.000 0.002 
77 0.235 0.976 0.002 0.024 
88 0.254 0.974 0.002 0.026 
99 0.267 0.973 0.002 0.027 

110 0.276 0.972 0.002 0.028 
111 0.278 0.972 0.002 0.028 
112 0.284 0.972 0.002 0.029 
113 0.305 0.969 0.002 0.031 
114 0.412 0.959 0.003 0.042 
115 0.417 0.958 0.003 0.042 
116 0.419 0.958 0.003 0.043 
117 0.424 0.958 0.003 0.043 
118 0.427 0.957 0.003 0.043 
119 0.434 0.957 0.003 0.044 
220 0.437 0.956 0.003 0.044 
221 0.450 0.955 0.003 0.046 
222 0.467 0.954 0.003 0.048 
223 0.478 0.953 0.003 0.049 
224 0.484 0.952 0.004 0.049 
226 0.487 0.952 0.004 0.050 
227 0.499 0.950 0.004 0.051 
228 0.528 0.948 0.004 0.054 
229 0.534 0.947 0.004 0.054 
330 0.551 0.945 0.004 0.056 
332 0.559 0.945 0.004 0.057 
333 0.566 0.944 0.004 0.058 
334 0.577 0.943 0.004 0.059 
335 0.592 0.942 0.004 0.060 
336 0.596 0.941 0.004 0.061 
337 0.604 0.940 0.004 0.061 
339 0.624 0.938 0.004 0.064 
440 0.641 0.937 0.005 0.065 
441 0.650 0.936 0.005 0.066 
442 0.668 0.934 0.005 0.068 
443 0.683 0.933 0.005 0.069 
444 0.688 0.932 0.005 0.070 
445 0.703 0.931 0.005 0.072 
446 0.714 0.930 0.005 0.073 
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448 0.725 0.929 0.005 0.074 
449 0.753 0.926 0.005 0.077 
550 0.771 0.925 0.006 0.078 
551 0.789 0.923 0.006 0.080 
552 0.795 0.922 0.006 0.081 
553 0.802 0.922 0.006 0.082 
554 0.815 0.920 0.006 0.083 
555 0.836 0.918 0.006 0.085 
556 0.881 0.914 0.006 0.090 
557 0.905 0.912 0.007 0.092 
558 0.914 0.911 0.007 0.093 
559 0.942 0.909 0.007 0.096 
661 0.951 0.908 0.007 0.097 
662 1.002 0.903 0.007 0.102 
663 1.045 0.899 0.008 0.106 
664 1.068 0.897 0.008 0.109 
665 1.093 0.895 0.008 0.111 
666 1.132 0.891 0.009 0.115 
667 1.146 0.890 0.009 0.117 
668 1.175 0.887 0.009 0.120 
669 1.191 0.886 0.009 0.121 
770 1.257 0.880 0.010 0.128 
771 1.294 0.877 0.010 0.132 
772 1.315 0.875 0.010 0.134 
773 1.364 0.870 0.011 0.139 
774 1.418 0.866 0.011 0.144 
776 1.450 0.863 0.012 0.148 
778 1.491 0.859 0.012 0.152 
884 1.552 0.854 0.014 0.158 
885 1.618 0.848 0.015 0.165 
889 1.976 0.818 0.033 0.201 
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Table 9.7 shows the ratio of hazard rates for this predictive algorithm that includes all the variables 

versus the statistically significant variables. The ratio of hazard rates shows the respective 

constants associated with the regression algorithm, as well as the percentage change of each 

variable based on one unit of change. If , the healing time decreases. If , 

healing time increases for that predictor variable, and the healing time increases by that calculated 

percentage. Or,  is the ratio of hazard rates that are one unit apart on the predictor 

variable. 

  

TABLE 9.6: VARIABLES IN THE EQUATION AND CORRESPONDING STATISTICS 

  BB SSE WWald ddf SSig. EExp(B) 

LLength_1 -0.433  0.111  15.304  1.000  0.000  0.648  

LLength_2 -0.359  0.090  15.757  1.000  0.000  0.698  

DDepth -7.009  0.747  88.083  1.000  0.000  0.001  

UUndermining 0.327  0.460  0.507  1.000  0.476  1.387  

GGranulat ion 0.002  0.002  1.142  1.000  0.285  1.002  

YYel low Necrot ic 

Tissue 

-0.003  0.003  1.184  1.000  0.276  0.997  

BBlack Necrot ic 

Tissue 

-0.003  0.002  1.483  1.000  0.223  0.997  

SSlough 0.001 0.003 0.191 1.000 0.662 1.001 

 

 

TABLE 9.7: RATIO OF HAZARD RATES 

 VVar iable Constants 

 BB EExp(B) CChange (%)  

LLength 1 -0.433 0.648 35.17 

LLength 2 -0.359 0.698 30.17 

DDepth -7.009 0.001 99.91 

GGranulat ion 0.327 1.387 -38.72 

UUndermining 0.002 1.002 -0.22 

YYel low necrot ic t issue -0.003 0.997 0.30 

BBlack necrot ic t issue -0.003 0.997 0.27 

SSlough 0.001 1.001 -0.13 
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The second model includes only those predictor variables  Length 1, Length 2, and depth  

that are the most commonly recorded in wound clinics.  

 

We have thus established a predictive model that uses only the most common wound 

characteristics given by:  

 

 

 

 
 (9.3) 

 

Unlike the previous model, which incorporated the calculated and assumed aspect ratios, this 

nonlinear model uses only the most commonly recorded wound characteristics as input variables 

in the equation. To establish the validity of using the Cox regression on the data, we analyzed the 

ratio of hazard rates that are one unit apart on the predictor [123]. Table 9.8 shows the ratio of 

hazard rates for the predictor variables and how they affect the healing time. Table 9.8 provides the 

information to determine the percent age of change if that predictor variable is equal to a specific 

value.  

TABLE 9.8: RATIO OF HAZARD RATES 

 VVar iable Constants 

 BB EExp(B) 
CChanged 

(%) 

LLength 1 -0.439 .644 35.55 

LLength 2 -0.336 .715 28.53 

DDepth -7.418 .001 99.94 

 

For every unit increase of a predictive variable, the percentage change equates to the effect that 

predictor variable has on the remaining healing time. If , the healing time decreases. If 

, healing time increases for that predictor variable and increases by that calculated 

percentage. In other words, for every additional increase of 1 cm. of Length 1, the healing rate 

slows, or increases, by 35.55%. Similarly, for Length 2, an increase of 1 cm. results in a 28.53% 

increase in healing time. Unlike Length 1 and Length 2, an increase in 1 cm. of depth results in a 

nearly 100% increase in healing time. In other words, Length 1 has a greater impact on remaining 

healing time and increases healing time more than does Length 2 for every one centimeter.  
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TABLE 9.9: COVARIATE MEANS 

  MMean 

LLength_1 1.370 

LLength_2 1.602 

DDepth 0.162 

 

Table 9.9 shows the covariate means for the model, including only the covariates of Length 1, 

Length 2, depth, and granulation. Figure 9.7 shows the survival functional plot of the four 

covariates from Table 9.9. Figure 9.8 depicts the cumulative survival estimate after the natural-log 

transformation that is applied to the estimate. The log-minus-log plot displays the log-minus-log of 

the survival function  that is,   versus the survival time. Figure 9.9 shows the 

modified baseline cumulative hazard plot with the respective estimated nonlinear function for the 

covariates in Table 9.9. Table 9.10 displays the numerical baseline hazard values and the survival 

probabilities. 

 

 

FIGURE 9.7: SURVIVAL FUNCTION AT MEAN OF COVARIATES 
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Figure 9.8 is important for understanding how the categorical predictors respond to the output of 

the Cox regression. The log (-log) plot represents a test of the main assumption of Cox regression 

and the proportional hazards. The assumption states that the ratio of the hazards should be the 

same across time for any two individuals.  

 

 

 

 

FIGURE 9.8: LOG-MINUS-LOG PLOT 
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TABLE 9.10: SURVIVAL TABLE 

TTime 
BBasel ine 

Cumulat ive 

Hazard

AAt mean of covar iates 
Survival SE Cum 

00 0.002 1.000 0.000 0.000 
33 0.007 0.999 0.000 0.001 
44 0.008 0.999 0.000 0.001 
55 0.009 0.999 0.000 0.001 
66 0.018 0.998 0.000 0.002 
77 0.255 0.976 0.002 0.024 
88 0.276 0.974 0.002 0.026 
99 0.289 0.973 0.002 0.028 

110 0.299 0.972 0.002 0.029 
111 0.301 0.972 0.002 0.029 
112 0.308 0.971 0.002 0.029 
113 0.330 0.969 0.002 0.032 
114 0.445 0.958 0.003 0.043 
115 0.450 0.958 0.003 0.043 
116 0.453 0.958 0.003 0.043 
117 0.458 0.957 0.003 0.044 
118 0.461 0.957 0.003 0.044 
119 0.469 0.956 0.003 0.045 
220 0.472 0.956 0.003 0.045 
221 0.486 0.954 0.003 0.047 
222 0.504 0.953 0.003 0.048 
223 0.516 0.952 0.003 0.049 
224 0.522 0.951 0.004 0.050 
226 0.525 0.951 0.004 0.050 
227 0.538 0.950 0.004 0.052 
228 0.569 0.947 0.004 0.055 
229 0.576 0.946 0.004 0.055 
330 0.594 0.945 0.004 0.057 
332 0.602 0.944 0.004 0.058 
333 0.610 0.943 0.004 0.058 
334 0.621 0.942 0.004 0.060 
335 0.637 0.941 0.004 0.061 
336 0.641 0.940 0.004 0.062 
337 0.650 0.940 0.004 0.062 
339 0.672 0.938 0.005 0.064 
440 0.690 0.936 0.005 0.066 
441 0.699 0.935 0.005 0.067 
442 0.719 0.933 0.005 0.069 
443 0.734 0.932 0.005 0.070 
444 0.739 0.932 0.005 0.071 
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445 0.756 0.930 0.005 0.072 
446 0.767 0.929 0.005 0.074 
448 0.779 0.928 0.005 0.075 
449 0.809 0.925 0.005 0.078 
550 0.828 0.924 0.006 0.079 
551 0.847 0.922 0.006 0.081 
552 0.854 0.921 0.006 0.082 
553 0.861 0.921 0.006 0.083 
554 0.875 0.920 0.006 0.084 
555 0.897 0.918 0.006 0.086 
556 0.945 0.913 0.006 0.091 
557 0.971 0.911 0.007 0.093 
558 0.980 0.910 0.007 0.094 
559 1.010 0.908 0.007 0.097 
661 1.020 0.907 0.007 0.098 
662 1.074 0.902 0.007 0.103 
663 1.120 0.898 0.008 0.107 
664 1.144 0.896 0.008 0.110 
665 1.171 0.894 0.008 0.112 
666 1.212 0.890 0.009 0.116 
667 1.227 0.889 0.009 0.118 
668 1.259 0.886 0.009 0.121 
669 1.275 0.885 0.009 0.122 
770 1.345 0.879 0.010 0.129 
771 1.385 0.876 0.010 0.133 
772 1.408 0.874 0.010 0.135 
773 1.460 0.869 0.011 0.140 
774 1.518 0.865 0.011 0.146 
776 1.552 0.862 0.012 0.149 
778 1.596 0.858 0.012 0.153 
884 1.660 0.853 0.013 0.159 
885 1.731 0.847 0.015 0.166 
889 2.063 0.821 0.030 0.198 
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99.3  NEURAL-NETWORK ANALYSIS 

Neural networks enable us to create predictive models that are both accurate and robust. Neural 

networks are the most widely used of the predictive modeling methods because they have 

consistently been the most reliable. However, the limitation of using neural networks is that they do 

not provide the ability to know the black-box algorithm that they create. Instead, we base the 

accuracy of the model on statistical measures, such as the number of average errors. We can 

control the neural network using input parameters, such as the number of hidden layers, the 

number of nodes within those hidden layers, the number of epochs, and the step size of the 

gradient descent. With this control, we can produce predictive algorithms that are accurate to 

within five days. We can also verify the accuracy of the algorithms using corresponding lift charts, 

which assist in measuring the effectiveness of a predictive model. Lift charts use the ratio of the 

original data to the predictive data to analyze the accuracy of the overall model. 

9.3.1  DATA ANALYSIS FOR DATA WITH ASPECT RATIO OF LESS THAN 1 

For the data in this category, we created the corresponding neural network (Figure 9.10), using 

Length 1, Length 2, depth, and granulation as inputs, which have been established as the highest 

contributing inputs to the output, time to heal. Tables Table 9.11 and Table 9.12 provide the 

specifics of the neural network, the number of epochs necessary, and the accuracy of the model. 

Similarly, the lift charts (Figure 9.11) provide verification and support for the comparison of the 

neural network model’s predictive performance to the baseline model with no predictors. 

 

Figure 9.10 shows the neural network model with the respective weights of the hidden node. We 

show this network model to compare the inputs and the weights between the groups of aspect 

ratios. The foundation of Figure 9.10 is a multilayer perception neural network. 
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FIGURE 9.10: NEURAL-NETWORK MODEL FOR DATA WITH ASPECT RATIO OF LESS THAN 1 

 

Table 9.11 shows the parameters of the neural-network model specific to Group 1, wounds with 

an aspect ratio less than 1.  

 

TABLE 9.11: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS, ASPECT RATIO LESS THAN 1 

Variables  Parameter/Options 

Number of  input 

variables 

4  Number of hidden layers 1 

Input variables Length 1, Length 2, depth, 

granulation 

 Number of nodes in Hidden 

Layer 1 

1 

Output variable Time remaining  Number of epochs 200 

   Step size for gradient descent 0.01 

   Weight-change momentum 0.6 

   Error tolerance 0.01 

   Weight decay 0 

 

Table 9.12 shows the training- and validation-data scoring for this network. The network analysis 

has returned accurate results with the average error for the training data of ±1.61 days. The 

validation error is more accurate with ±0.20 days of predictive accuracy. 
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TABLE 9.12: TRAINING- AND VALIDATION-DATA SCORING REPORT, ASPECT RATIO LESS THAN 1 

Training-Data Scoring   Validation-Data Scoring 

Total sum of 

squared errors 

RMS error Average 

error 

  Total sum of squared 

errors 

RMS 

error 

Average 

error 

129705.47 22.96 1.61   70953.89 26.00 0.20 

 

Figure 9.11 and Figure 9.12 show the lift charts for the validation data set. These lift charts are 

based on the fitting from a linear-regression model that includes the time to heal and the set of 

predictor variables that describe the wound: Length 1, Length 2, depth, and granulation. The lift 

chart shows that the model’s predictive performance is better than the baseline model due to the 

higher lift curve. 

 



www.manaraa.com

 

 176 

 

FI
G

U
R

E
 9

.1
1:

 L
IF

T 
C

H
A

R
T 

FR
O

M
 N

E
U

R
A

L-
N

E
TW

O
R

K
 M

O
D

E
L 

FO
R

 D
A

TA
 W

IT
H

 A
R

 <
 1

, T
R

A
IN

IN
G

 D
A

TA
S

E
T 

  



www.manaraa.com

 

 177 

 

FI
G

U
R

E
 9

.1
2:

 L
IF

T 
C

H
A

R
T 

FR
O

M
 N

E
U

R
A

L-
N

E
TW

O
R

K
 M

O
D

E
L 

FO
R

 D
A

TA
 W

IT
H

 A
S

P
E

C
T 

R
A

TI
O

 O
F 

LE
S

S
 T

H
A

  1
, V

A
LI

D
A

TI
O

N
 D

A
TA

 S
E

T 

  



www.manaraa.com

 

 178 

99.3.2  DATA ANALYSIS FOR COMBINED DATA OF ASPECT RATIO LESS THAN 1 AND RBMC 

DATA 

Figure 9.13 shows the neural-network model for the combined data from both Vohra and RMBC. 

The purpose of combining the data was to determine whether the origin of the data had an effect 

on the neural-network model.  

 

 

 

FIGURE 9.13: NEURAL NETWORK MODEL FOR DATA WITH AR < 1 AND RBMC

Table 9.13 shows the neural-network parameters for which we established the training and 

validation scoring. 

 

TABLE 9.13: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS, 

ASPECT RATIO OF LESS THAN 1 AND RBMC 

Variables  Parameter/Options 

Number of input 

variables 

4  Number of hidden layers 1 

Input variables Length 1, Length 2, depth, 

granulation

 Number of nodes in Hidden 

Layer 1

1 

Output variable Time remaining  Number of epochs 100 

   Step size for gradient descent 0.01 

   Weight-change momentum 0.15 

   Error tolerance 0.01 

   Weight decay 0 

 

With an average error of ±4.15 days between the theoretical and the actual outputs, the training-

data scoring in this section is slightly less accurate than that of the neural-network in Section 9.31 
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However, the validation-data scoring was more precise with an average error of slightly less than 

±0.50 days. 

 

TABLE 9.14: TRAINING- AND VALIDATION-DATA SCORING REPORT, ASPECT RATIO LESS THAN 1 AND RBMC 

Training-Data Scoring   Validation-Data Scoring 

Total sum of 

squared errors 

RMS error Average 

error 

  Total sum of squared 

errors 

RMS 

error 

Average 

error 

482383.73 34.13 4.15   178951.28 31.80 0.48 

99.3.3  DATA ANALYSIS FOR DATA WITH ASPECT RATIO GREATER THAN 1 AND LESS THAN 2 

Similarly, Figure 9.14 shows the neural-network model for Group 2, wounds that have an aspect 

ratio greater than 1 and less than 2.  

 

 

 

FIGURE 9.14: NEURAL-NETWORK MODEL FOR DATA WITH ASPECT RATIO GREATER THAN 1 AND LESS THAN 2  

Table 9.15 shows the parameters for Group 2’s neural-network model. 
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TABLE 9.15: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS, 

ASPECT RATIO GREATER THAN 1 AND LESS THAN 2 

Variables  Parameter/Options 

Number of input 

variables 

4  Number of hidden layers 1 

Input variables Length 1, Length 2, depth, 

granulation 

 Number of nodes in Hidden 

Layer 1 

1 

Output Variable Time Remaining  # Epochs 150 

   Step size for gradient descent 0.01 

   Weight change momentum 0.10 

   Error tolerance 0.01 

   Weight decay 0 

 

Table 9.16 shows the training- and validation-scoring reports, revealing an average error of ±0.14 

and ±0.53 days, respectively.  

 

TABLE 9.16: TRAINING- AND VALIDATION-DATA SCORING REPORT, 

ASPECT RATIO GREATER THAN 1 AND LESS THAN 2 

Training-Data Scoring   Validation- Data Scoring 

Total sum of 

squared errors 

RMS error Average 

error 

  Total sum of squared 

errors 

RMS 

error 

Average 

error 

170397.51 23.91 0.14   74061.73 24.05 0.53 

 

99.3.4  DATA ANALYSIS FOR COMBINED DATA, ASPECT RATIO OF GREATER THAN 1 AND LESS 

THAN 2 AND RBMC DATA 

Figure 9.15 depicts the neural network for the combined data of Group 2 from Vohra and RBMC. 

We used these neural network visualizations to compare how the combination of data from 

different origins affects the neural-network analysis. As this chapter shows, best-fit neural-network 

parameters have one hidden layer, one hidden node, and varying numbers of epochs and weight-

change momentums.  
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FIGURE 9.15: NEURAL NETWORK MODEL FOR DATA WITH 1< ASPECT RATIO < 2 AND RBMC  

Table 9.17 shows the neural-network parameters for the neural network in Figure 9.15. 

 

TABLE 9.17: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS, 

ASPECT RATIO GREATER THAN 1 AND LESS THAN 2 AND RBMC 

Variables  Parameter/Options 

Number of input 

variables 

4  Number of hidden layers 1 

Input variables Length 1, Length 2, depth, 

granulation 

 Number of nodes in Hidden 

Layer 1 

1 

Output variable Time remaining  Number of epochs 100 

   Step size for gradient descent 0.01 

   Weight-change momentum 0.05 

   Error tolerance 0.01 

   Weight decay 0 

 

Table 9.18 states the accuracy of this neural network’s training- and validation-data scoring 

results. For this neural network, the training data scored an average error of ±1.69 days, whereas 

the validation data scored ±0.77 days. 

 

TABLE 9.18: TRAINING- AND VALIDATION-DATA SCORING REPORT, 

ASPECT RATIO GREATER THAN 1 AND LESS THAN 2 AND RBMC 

Training-Data Scoring Validation-Data Scoring

Total sum of RMS error Average   Total sum of squared RMS Average 
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squared errors error errors Error Error 

505659.23 32.94 1.69   209347.23 32.35 0.77 

 

These results bode well for this model’s ability to predict an accurate time to heal given a reliable 

set of patient-demographic and wound-characteristic inputs. 

99.3.5  DATA ANALYSIS FOR DATA WITH ASPECT RATIO GREATER THAN 2 

Figure 9.16 presents the final neural-network model. To develop an accurate model for wounds 

with an aspect ratio greater than 2, the model needed more hidden nodes within its hidden-layer 

structure. Increasing the number of hidden nodes makes the neural network more complex than 

the previous models (Figure 9.16). Table 9.19 and Table 9.20 provide the interlayer connection 

weights for both the input and the output layers of this neural-network model. 
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FIGURE 9.16: NEURAL-NETWORK MODEL FOR DATA WITH ASPECT RATIO 1 AND RBMC  
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TABLE 9.19: NEURAL-NETWORK PREDICTION, INTERLAYER CONNECTION WEIGHTS 

  IInput Layer 

HHidden Layer 1  LLength 1 LLength 2 DDepth GGranulat ion BBias Node 

NNode 1 -1.03 -0.62 -0.21 -0.46 0.06 

NNode 2 -0.89 0.67 -0.10 0.74 0.30 

NNode 3 0.79 -1.12 -0.37 -0.43 0.37 

NNode 4 -0.34 0.85 0.62 0.53 0.00 

NNode 5 -0.20 0.97 0.40 -0.83 0.21 

NNode 6 0.30 0.14 -0.25 -0.72 0.74 

NNode 7 -0.67 0.31 0.11 0.70 -0.81 

NNode 8 0.08 -0.91 -0.60 -0.58 -1.09 

NNode 9 -0.69 -0.39 -1.05 -0.76 -0.14 

NNode 10 0.55 -0.37 0.28 -0.70 -0.77 

NNode 11 -0.57 -0.89 0.16 -0.57 0.43 

NNode 12 0.21 0.73 -0.05 0.79 0.58 

NNode 13 0.16 -0.49 0.22 0.38 -0.12 

NNode 14 -0.97 0.82 -0.55 -0.14 -0.25 

NNode 15 0.28 1.06 -0.26 -1.04 -0.77 

NNode 16 0.92 -0.86 -0.68 0.16 0.22 

NNode 17 0.06 -0.32 -0.50 0.92 0.22 

NNode 18 -0.93 -0.70 -0.57 -0.19 0.66 

NNode 19 0.65 0.70 -0.55 -0.10 -0.38 

NNode 20 -0.27 -0.66 -0.30 -0.32 0.43 

NNode 21 0.31 -0.77 -0.29 -0.38 -0.47 

NNode 22 0.82 -0.61 0.39 0.44 -0.28 

NNode 23 0.05 -0.22 0.49 -0.42 -0.02 

NNode 24 0.07 -0.56 -0.67 0.81 -0.07 

NNode 25 -1.01 -0.04 0.15 0.27 -1.00 
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TABLE 9.20: NEURAL-NETWORK PREDICTION, OUTPUT-LAYER CONNECTION WEIGHTS 

HHidden Layer 1 OOutput 

NNode 1 -0.21 

NNode 2 0.01 

NNode 3 0.73 

NNode 4 0.00 

NNode 5 -0.92 

NNode 6 0.21 

NNode 7 0.46 

NNode 8 -0.45 

NNode 9 0.83 

NNode 10 0.29 

NNode 11 0.19 

NNode 12 -0.29 

NNode 13 0.33 

NNode 14 0.03 

NNode 15 -0.81 

NNode 16 0.19 

NNode 17 0.47 

NNode 18 0.01 

NNode 19 0.16 

NNode 20 -0.34 

NNode 21 -0.09 

NNode 22 -0.24 

NNode 23 -0.27 

NNode 24 0.25 

NNode 25 -0.68 

BBias Node -0.40 

 

Table 9.21 the neural network parameters, revealing 25 nodes within the hidden layer. However, 

unlike the previous models, the network experienced only 10 epochs, or iterations.  
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TABLE 9.21: NEURAL NETWORK PREDICTION VARIABLES AND PARAMETERS, ASPECT RATIO GREATER THAN 2 

Variables  Parameter/Options 

Number of input 

variables 

4  Number of hidden layers 1 

Input variables Length 1, Length 2, depth, 

granulation 

 Number of nodes in Hidden 

Layer 1 

25 

Output variable Time remaining  Number of epochs 10 

   Step size for gradient descent 0.01 

   Weight-change momentum 1 

   Error tolerance 0.01 

   Weight decay 0 

 

Table 9.22 shows the training- and validation-data scoring. Unlike the previous models, the best 

average error for Group 3 of chronic wounds was ±5.69 days for training data and ±4.02 days for 

validation data. This figure, on average, was a larger error than that of any of the previous neural-

network models. We have hypothesized the primary reason behind this discrepancy is that the 

larger the aspect ratio, the more obscure the shape of the wound. This obscurity could result in 

nonuniform healing. 

 

TABLE 9.22: TRAINING- AND VALIDATION DATA-SCORING REPORT, ASPECT RATIO GREATER THAN 2 

Training-Data Scoring   Validation-Data Scoring 

Total sum of 

squared errors 

RMS error Average 

error 

  Total sum of squared 

errors 

RMS 

error 

Average 

error 

29086.64 22.39 -5.69   21056.33 29.02 4.02 

 

99.3.6  DATA ANALYSIS FOR COMBINED DATA WITH ASPECT RATIO GREATER THAN 2, 

RBMC DATA 

Figure 9.17 depicts the final neural-network model. This model combines analysis of wounds with 

an aspect ratio greater than 2 and wound data from RBMC.  
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FIGURE 9.17: NEURAL-NETWORK MODEL FOR DATA WITH ASPECT RATIO GREATER THAN 2, RBMC 

Table 9.23 provides the parameters for the final neural-network model.  

 

TABLE 9.23: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS, 

ASPECT RATIO GREATER THAN 2, RBMC 

Variables  Parameter/Options 

Number of input variables 4  Number of hidden layers 1 

Input variables Length 1, Length 2, 

depth, granulation 

 Number of nodes in Hidden 

Layer 1 

1 

Output variable Time remaining  Number of epochs 145 

   Step size for gradient descent 0.01 

   Weight-change momentum 0.25 

   Error tolerance 0.01 

   Weight decay 0 

 

Table 9.24 shows the training- and validation-data scoring, with an average error of ±3.80 and 

±2.25 days, respectively. 

 

TABLE 9.24: TRAINING- AND VALIDATION-DATA SCORING REPORT, ASPECT RATIO GREATER THAN 2, RBMC 

Training-Data Scoring   Validation-Data Scoring 

Total sum of squared 

errors 

RMS error Average error   Total sum of squared 

 errors 

RMS error Average error 

321371.83 37.71 3.80   130663.77 36.70 -2.25 
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99.4  VALIDATION 

To validate the accuracy of the models and methodology, we tested the models against respective 

data. From the neural-network models, we learned that it is possible to relatively accurately predict 

a time to heal. Within the context of the data and chronic-wound situation, the difference for these 

patients’ time remaining to wound closure was insignificant, ranging from five to 10 days.  

9.4.1  NONLINEAR REGRESSION: COX REGRESSION 

The hazard function is a measure of the potential for the event to occur at a particular time, t, 

provided that the event did not occur yet. The greater the hazard function, the greater the potential 

and probability for the event to occur  in this case, for the wound to heal [98, 123]. A set of 

assumptions is made for each predictive-modeling technique. For the Cox proportional-hazards 

regression model, those assumptions include [99]: 

• Independence of survival times among wounds within the data sample, 

• A multiplicative, or nonlinear, relationship between the covariates and predictors and the 

hazard, and 

• A calculated baseline hazard function at time t. 

 

The Cox model is agnostic as the functional form of the baseline function. Cox regression in itself is 

inherently both semiparametric and nonparametric. It is semiparametric because  is 

nonparametric. However, because  is parametric, we specify an exponential shape, which is a 

mathematical consequence of assuming a proportional hazard over time. Theoretically, we expect 

a wound to start large and become smaller as time progresses. Although we theorized an 

exponential decline of the data over time, the baseline hazard function could have easily taken 

other graphical shapes. Unless we centered the data on the mean, or set it to zero, the baseline 

hazard graph simply shows the hazard rate when the predictors are at their mean level [99]. 

 

The survival function is the ratio of the hazard function and the baseline hazard function as given 

by: 

  (9.4) 

 

The baseline survival function was determined as a function of the baseline hazard function: 

 

  (9.5) 
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The survival function as a constant power of the baseline survival function is given by:  

 

  (9.6) 

 

The corresponding survival function for Wound 4917 (Figure 9.18) at the probability that survival is 

equal to zero is given by: 

 

  (9.7) 

 

The approximate time to wound closure for Wound 4917 is 103 days. 

 

The Cox proportional hazard model outputs a ratio rather than a time to heal. Therefore, to validate 

the use of this model, we calculated an alternative output as a function of the Cox proportional 

hazard. Thus, we verified the effectiveness of the model through the survival function, a function of 

the proportional hazard function. The survival function captures the probability that the wound will 

survive beyond time t. Through alternative calculations, we calculated the survival function of 

randomly selected wounds to determine whether the probability that the wound would survive 

corresponded with the actual recorded time of the patient visit. Figure 9.18 provides a visual 

example of the probability that this wound will survive until time t.  

 

Each person’s ability to heal a wound is unique. Therefore, it is nearly impossible to create a 

universal model to predict wound healing. However, with enough of a patient’s retrospective data, 

demographics, and wound characteristics, we can develop a customized predictive model for that 

patient’s wound. Figure 9.18 provides an example of a single wound’s trajectory based on the Cox 

regression survival function. Using the approximated quadratic equation in Figure 9.18, we 

estimated that Wound 3381 would heal in approximately 62 days. The actual wound closure 

occurred in 56 days. 
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Similarly, in Figure 9.19, we show an example of three wounds and their respective survival 

function outputs. Unlike the outputs in Figure 9.18, more erratic behavior occurs with regard to 

curve fitting and shape within the survival functions that incorporate all the variables. More 

predictor variables appear to create more complex analysis to determine whether the wound 

survives until a specific time, t.  

99.4.2  NEURAL NETWORKS 

We developed a series of steps that supported the most robust algorithm we could design. We 

used correlation matrices and variable selection mechanisms to statistically determine the 

applicable predictor variables. To verify the validity of the neural network, we rely on the error of 

both the training and the validation data. We rely more on the feedback of the validation data in an 

attempt to not “overfit” the model to the training data. Table 9.25 provides a summary of the 

training and validation scoring from the original data, classified only by aspect ratio. Table 9.25 

represents the data from Vohra. 

 

TABLE 9.25: SUMMARY OF TRAINING- AND VALIDATION-DATA SCORING REPORT 

AAspect Rat io 1       

Training-Data Scoring   Validation-Data Scoring 

Total sum of 

squared errors 

RMS error Average 

error 

  Total sum of squared 

errors 

RMS 

error 

Average 

error 

129705.47 22.96 1.61   70953.89 26.00 0.20 

AAspect Rat io 2       

Training-Data Scoring   Validation-Data Scoring 

Total sum of 

squared errors 

RMS error Average 

error 

  Total sum of squared 

errors 

RMS 

error 

Average 

error 

170397.51 23.91 0.14   74061.73 24.05 0.53 

AAspect Rat io 3:       

Training-Data Scoring   Validation-Data Scoring 

Total sum of 

squared errors 

RMS error Average 

error 

  Total sum of squared 

errors 

RMS 

Error 

Average 

error 

29086.64 22.39 -5.69   21056.33 29.02 4.02 

 

Table 9.26 categorizes the training and validation scoring reports by the data’s original aspect ratio 

with the data from RBMC. To validate the methodology, we first looked at the training data. The 

training data’s statistics reflect the fit of the network on 70% of the data. In this case, the training 
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error averages 3.21 days between the three classifications. Furthermore, the networks average 

better return on the validation data approximately 30% of the original data with an average data 

of 0.56 days within the predicted value. All the validation-scoring reports show that the neural 

network is an accurate predictive modeling for the validation data.  

 

TABLE 9.26: SUMMARY OF TRAINING- AND VALIDATION-DATA SCORING REPORT 

AAspect Rat io 1       

Training-Data Scoring   Validation-Data Scoring 

Total sum of 

squared errors 

RMS error Average 

error 

  Total sum of squared 

errors 

RMS 

error 

Average 

error 

482383.73 34.13 4.15   178951.28 31.80 0.48 

AAspect Rat io 2:       

Training-Data Scoring   Validation Data Scoring 

Total sum of 

squared errors 

RMS error Average 

error 

  Total sum of squared 

errors 

RMS 

error 

Average 

error 

505659.23 32.94 1.69   209347.23 32.35 0.77 

AAspect Rat io 3       

Training-Data Scoring   Validation=Data Scoring 

Total sum of 

squared errors 

RMS error Average 

error 

  Total sum of squared 

errors 

RMS 

error 

Average 

error 

321371.83 37.71 3.80   178951.28 31.80 0.48 

 

RMS error within a neural-network analysis measures the difference between the predicted values 

by the model and the actual observed values. The RMS error is computed on the validation data. 

Because RMS error is difference between actual and predictive model values, the ideal RMS 

values should be small. The returned RMS error in Table 9.26 represents an average RMS error of 

31.98, or approximately 32, days, a roughly four-week tolerance. Four weeks may seem like a long 

time for a wound to heal. However, it seems insignificant to those with chronic wounds that have 

lasted six to eight months.  

 

We compared the predicted value to the actual value from the neural network analysis. Table 9.27 

provides a sample of the validation scoring that occurs as part of the neural-network analysis. We 

notice that the percentage error ranges rom 2.55% to 431% in this sample data. This range 

correlates to a difference range of two days to 12 weeks. The statistics in Table 9.25 and the large 

sum of the squared errors from the network analysis reinforce this feedback.  
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TABLE 9.27: SAMPLE VALIDATION SCORE 

PPredicted 

Value 

AActual 

Value 
RResidual LLength 1 LLength 2 DDepth GGranulat ion 

PPercentage 

Error 

DDifference 

(Weeks) 

40.64 98 57.356888 3.8 2.4 0.2 100 58.53 8.19 

40.64 91 50.356888 3.8 2.4 0.2 100 55.34 7.19 

49.38 21 -28.382882 4 2.7 0.3 100 135.16 -4.05 

39.42 14 -25.420974 3.5 2 0.2 100 181.58 -3.63 

75.96 56 -19.961683 5 3.8 0.5 100 35.65 -2.85 

64.61 63 -1.605641 5 3.8 0.4 100 2.55 -0.23 

27.00 117 90.004332 0.8 1 0.1 0 76.93 12.86 

30.43 54 23.571859 0.6 1.2 0.2 0 43.65 3.37 

30.10 40 9.901263 0.5 1 0.2 0 24.75 1.41 

30.24 33 2.760344 0.8 1 0.2 0 8.36 0.39 

26.56 5 -21.558464 0.4 0.7 0.1 0 431.17 -3.08 

24.91 21 -3.908657 1.9 1 0 0 18.61 -0.56 
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10  CHAPTER 10 MODEL VALIDATION AND VERIFICATION 

CHAPTER 10 
Model Validation and Verification 

RBMC provided us with the opportunity to observe and collect original patient data. Ideally, the 

preference was the development of a universal algorithmic model to accommodate all wound 

clinics. However, with further insight and understanding of factors that contribute to day-to-day 

wound care, that task was not feasible with the current data set. This chapter discusses and 

verifies the methodology that we created and established from the data of Vohra and applies it to 

data collected from RBMC. 

110.1  OVERVIEW 

We used the data from RBMC to cross-validate the methodology on a new and unrelated set of 

data. This step allowed us to test the methods on an independent data sample and determine the 

validity of the processes and methodologies. Because we collected a smaller amount of data from 

RBMC than from Vohra, we were able to observe, converse, and record the necessary 

measurements through patient interaction and patient transcripts. 

 

From the data summarized Figure 10.1, we determined the ideal wound-healing measurements 

and characteristics in Table 10.1. Table 10.1 shows the threshold of each variable. The 

combination of the independent variables shows when we consider the wound to be healed. 
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(A) LENGTH 1  (B) LENGTH 2 

 

 

 

(C) DEPTH  (D) VOLUME 

FIGURE 10.1: BOX PLOTS FOR RBMC DATA 

 

 

TABLE 10.1: LOWER AND UPPER WHISKERS OF BOX PLOTS FOR RBMC DATA 

Independent Variable Lower Quartile Upper Quartile 

Length 1 0.40 0.90 

Length 2 0.30 1 

Depth 0.10 0.20 

Granulation tissue 0 100 
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110.2  DATA COLLECTION 

The data from RBMC was collected over multiple weeks. Similar to what occurs in other wound 

clinics, most RBMC patients have weekly or biweekly visits to care for their wounds. Although, the 

facility is extremely knowledgeable about how to efficiently treat wounds, staff may have difficulty in 

understanding patients’ lifestyles. Nutrition plays a significant role in wound healing, and it is one of 

the most difficult factors to observe. Table 10.2 shows an example of a patient’s wound that took 

117 days to heal. Because these are chronic wounds, one of the assumptions for this study is that 

the first visit to a wound care clinic is , regardless of the length of time patients have had 

their wounds before their first appointments. 

 

By performing similar analysis on the data from RBMC, the expected healing pattern for our 

validation data deviated little from the analysis results of the training data. Figure 10.2 through 

Figure 10.5 show the behavior of variables length 1, length 2, depth, and volume over time.  

 

TABLE 10.2: SAMPLE PATIENT DATA 

WWound ID 

TTime to 

Heal LLength 1 LLength 2 DDepth VVolume BBlack Necrot ic 

20002 117 0.8 1 0.1 0.08 0 

20002 96 0.8 0.7 0.1 0.056 100 

20002 89 0.6 1 0.2 0.12 100 

20002 82 0.6 0.8 0.2 0.096 100 

20002 68 0.6 0.8 0.2 0.096 100 

20002 61 0.6 1.4 0.2 0.168 100 

20002 54 0.6 1.2 0.2 0.144 100 

20002 47 0.5 1 0.2 0.1 100 

20002 40 0.5 1 0.2 0.1 100 

20002 33 0.8 1 0.2 0.16 100 

20002 26 0.5 1.2 0.2 0.12 100 

20002 19 0.5 1.2 0.2 0.12 100 

20002 5 0.4 0.7 0.1 0.028 100 

20002 0 0 0 0 0 100 
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110.3  THREE-DIMENSIONAL SURFACE PLOTS 

Three-dimensional surface plots help demonstrate the behavior and relationship among three 

variables and to determine the location of a combination of variables based on density and 

population. For this analysis, three-dimensional surface plots permit us to visually represent three 

variables of data and the relationships between them. For example, Figure 10.6 through Figure 

10.8 display the relationship between Length 1 and Length 2 with time to heal. Figure 10.6 shows 

the relationship among the variables with the fit of a quadratic curve, and Figure 10.8 represents a 

linear relationship. 

 

Surface plots and the combination of variables determine any patterns or similarities between the 

respective combinations. Table 10.3 shows the combination of variables per each group of surface 

plots. 

 

TABLE 10.3: VARIABLE COMBINATIONS OF SURFACE PLOTS 

Combination Variables Figures 

   
1 Time to heal versus Length 1 and 

Length 2 
Figure 10.6, 10.7, 10.8  

   
2 Depth versus Length 1 and Length 2 

10.3.1.1.1 10.9, 10.10, 10,11 
   

3 Time to heal versus Length 2 and 
depth 

10.12, 10.13, 10.14 

   
 Depth versus Length 2 and depth 

10.3.1.1.2 10.15, 10.16. 10.17 
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FIGURE 10.6: SURFACE PLOT: TIME TO HEAL AGAINST LENGTH 1, LENGTH 2 (QUADRATIC FIT) 
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FIGURE 10.9: SURFACE PLOT: TIME TO HEAL AGAINST LENGTH 1, LENGTH 2 (QUADRATIC FIT)
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110.4  VALIDATING PREDICTIVE MODELS AND THE METHODOLOGY 

10.4.1  MULTIPLE L INEAR-REGRESSION MODEL, RBMC 

The multiple linear-regression models also showed predictive capabilities. Although the expectation 

for accuracy was greater for the neural-network model, the linear-regression model produced 

better predictive capabilities, resulting in approximately 5.55-day accuracy. 

 

TABLE 10.4: MULTIPLE LINEAR-REGRESSION MODEL VARIABLES, RBMC DATA 

Variables  

Number of input 

variables 

5  

Input Variables Length 1, Length 2, depth, granulation, black necrotic 

tissue 

 

Output variable Time remaining  

 

TABLE 10.5: MULTIPLE LINEAR-REGRESSION MODEL PARAMETERS, RBMC DATA 

RRegression Model 

Input variables Coefficient Standard Error p-value SS 

Constant term -26.15 13.67 0.06 155107.69 

Length 1 2.46 12.83 0.85 839.47 

Length 2 52.12 19.34 0.01 3744.70 

Depth 264.32 74.42 0.00 35630.03 

Granulation 0.48 0.13 0.00 31331.90 

Black necrotic tissue -0.26 0.16 0.11 3488.11 

 

The regression-model statistics include the degrees of freedom, standard deviation, and R2 (Table 

10.6). These statistics represent characteristics about this linear-regression model.  

 

TABLE 10.6: MULTIPLE LINEAR-REGRESSION MODEL PARAMETERS, RBMC DATA 

IInput var iables CCoeff ic ient 

Residual DF 46 

R2 0.56 

Standard deviation 

estimate 

36.14 

Residual SS 60082.11 
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The corresponding data in Table 10.5 establishes the linear-regression predictive model 

(Equation(10.1)). This model produces an RMS error of 44.47 days and an average error of 

approximately 5.55 days (Table 10.7). 

 

 (10.1) 

  

 

TABLE 10.7: TRAINING AND VALIDATION DATA SCORING REPORT FOR RBMC DATA 

Training-Data Scoring   Validation-Data Scoring 

Total sum of 

squared errors 

RMS error Average 

error 

  Total sum of squared 

errors 

RMS 

error 

Average 

error 

60082.11 33.99 0.00   43497.94 44.47 -5.55 

 

110.4.2  NONLINEAR REGRESSION: COX PROPORTIONAL HAZARDS MODEL 

The Cox Proportional hazard model assumes that enough data exists to train a regression model 

and have it understand the difference between a healed and an unhealed wound. With the data 

from RBMC, there is insufficient wound range for the model to understand and recognize what a 

healed-wound model. As a result, the survival function has a different shape from the curve using 

the feedback from the Vohra data (Figure 10.18).  

 

Equation (10.2) describes the hazard function equation for the RBMC data. This function, similar to 

the analysis in Section 9.2, allows the calculation of the survival function to determine the individual 

wound-trajectory algorithms. 

 

 (10.2) 

 

Table 10.8 and Table 10.9 provide the summary statistics of the ratio of hazard rates and the 

percentage change that equates to one unit of change per predictor variable.  
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TABLE 10.8: RATIO OF HAZARD RATES 

 VVar iable Constants 

 BB EExp(B) 
CChanged 

(%) 

LLength 1 0.037 1.037 3.70 

LLength 2 -0.086 0.918 8.20 

DDepth -8.142 0.000 0.00 

 

  

TABLE 10.9: COVARIATE MEANS 

  MMean 

LLength_1 3.632 

LLength_2 2.468 

DDepth 0.20 

 

We lack sufficient data on healed wounds to accurately use the survival-function plot of the mean 

of the covariates to predict when a wound would heal. 
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Similar to plots in Section 9.2, Figure 10.22 is a plot of three example wounds and their projected 

survival time. As model verification, we plotted the survival versus time for each wound. This plot 

allows us to approximate a regression equation for that wound and the time at which survival will 

equal zero. Figure 10.23 provides the graphical representation of the survival-function probability 

for one wound. We included this plot because it was the longest tracked wound that we have 

documented. Figure 10.23 shows the complexity of wound healing. Additionally, it represents 

typical and somewhat erratic behavior of wound healing and how factors can influence the healing 

time of a chronic wound. In many cases, wounds must become larger before they get smaller, 

which seems counterintuitive. Yet it emphasizes the complexity of the human body and the healing 

process. 

 

We verified the methodology through the calculated numerical value of the survival function. The 

resulting outputs led each wound to have a set of survival-function outputs that correspond to their 

respective time, t. The data from Figure 10.22 shows how we arrived at the respective calculations 

and, ultimately, the regression equation. 

 

Equation (10.3) expresses the ratio of the hazard function at time t to the baseline hazard function 

or the mean of the covariates. This ratio allows us to understand how a wound at time t changes 

compared with the hazard function when all predictive covariates are equal to zero.  

 

  (10.3) 

 

The baseline survival function was determined as a function of the baseline hazard function: 

 

  (10.4) 
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The survival function as a constant power of the baseline survival function is given by:  

 

  (10.5) 

 

Table 10.10 documents the wound plotted in Figure 10.23 with the respective numerical values of 

the variables in equations 10.3, 10.4, and 10.5. Figure 10.23 is a plot of the survival function 

versus time in Table 8.6 versus Time (Column 2 in Table 10.10). Equation  (10.6) yields the 

approximate regression equation for the best-fit line in Figure 10.23: 

 

  (10.6) 

 

Solving Equation (10.6) at  produces three roots. The only positive root is the wound’s 

approximate healing day. The root of the equation represents the number of days since the wound 

was conceived at t = 0. For this patient’s wound, the approximate day of healing is the 163rd day 

since the patient first visited a wound clinic. This calculation results in approximately a 17% error, 

or approximately four weeks.  

 

  (10.7) 

 

Although we would have preferred a smaller error, a tolerance of four weeks for a wound to heal is 

an adequate tolerance for an individual that would have had a wound for nearly six months. A 

number of factors contribute to wound healing, many of which only the patient can control.  
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TABLE 10.10: WOUND DATA THAT CORRESPONDS TO PLOT IN FIGURE 10.23 

WWound 

Number 

Time 

(Days) 

Healed or 

Unhealed 

Basel ine 

Hazard 

Function 

Exponent 

Ratio of 

Hazard 

Function to 

Basel ine 

Hazard 

Survival 

Funct ion 

20019 0 0 0.01 0.001 0.074 1.000 

20019 7 0 0.01 0.003 0.329 0.997 

20019 14 0 0.01 0.003 0.329 0.997 

20019 21 0 0.01 0.003 0.329 0.995 

20019 28 0 0.01 0.012 1.279 0.978 

20019 35 0 0.10 0.003 0.027 0.993 

20019 42 0 0.22 0.147 0.667 0.601 

20019 49 0 0.49 0.286 0.580 0.265 

20019 56 0 0.86 0.086 0.100 0.615 

20019 63 0 0.86 0.286 0.334 0.156 

20019 70 0 0.86 0.174 0.204 0.276 

20019 77 0 0.86 0.056 0.065 0.614 

20019 84 0 0.86 0.053 0.062 0.538 

20019 91 0 1.12 0.053 0.047 0.447 

20019 98 0 1.12 0.038 0.034 0.566 

20019 105 0 1.12 0.046 0.041 0.501 

20019 112 0 1.12 0.014 0.012 0.810 

20019 119 0 1.46 0.102 0.069 0.215 

20019 126 0 1.46 0.143 0.098 0.114 

20019 133 0 1.46 0.143 0.098 0.114 

20019 140 0 1.46 0.116 0.079 0.174 

20019 147 0 1.46 0.086 0.058 0.274 

20019 154 0 1.46 0.086 0.058 0.274 

20019 161 0 1.46 0.086 0.058 0.274 

20019 168 0 1.46 0.097 0.067 0.229 

20019 175 0 1.46 0.113 0.077 0.180 

20019 182 1 2.19 0.226 0.103 0.033 

20019 189 1 3.08 0.263 0.085 0.019 

20019 196 1 3.08 1.000 0.325 0.000 
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110.4.3  NEURAL-NETWORK MODEL BASED ON DATA FROM RBMC 

For this study, we analyzed 22 unique wounds with 240 documented visits. Because the model is 

a time-varying analysis, each wound had a minimum of five recorded clinic visits. For the data, the 

neural-network model that fits this data has an average validation-scoring error of ±1.40 days, 

indicating that the model had accurate predictive capabilities. However, the RMS error was 

relatively high indicating that the data does not follow a specific pattern. A similarly high standard 

deviation of 53.12 days for the original output also results in a high RMS error. We attribute the 

high standard deviation and RMS to human inconsistencies that naturally occur in wound 

measurement. Table 10.11 shows these neural-network model parameters. 

 

TABLE 10.11: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS, RBMC DATA 

Variables  Parameter/Options 

Number of input 

variables 

4  Number of hidden layers 1 

Input variables Length 1, Length 2, depth, 

granulation, black necrotic 

tissue 

 # Nodes in HiddenLayer-1 1 

Output variable Time remaining  Number of epochs 30 

   Step size for gradient descent 0.01 

   Weight-change momentum 0.6 

   Error tolerance 0.01 

   Weight decay 0 

 

Table 10.12 shows the training- and validation-data scoring report. The average error for this 

model is ±0.618 and ±1.40 days for the training- and validation-data scoring, respectively. 
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TABLE 10.12: TRAINING- AND VALIDATION-DATA SCORING REPORT FOR RBMC DATA 

Training-Data Scoring   Validation-Data Scoring 

Total sum of 

squared errors 

RMS error Average 

error 

  Total sum of squared 

errors 

RMS 

error 

Average 

error 

70405.461 36.796 -0.6177   46119.47495 45.786 1.4025 

 

The study at RBMC validates the methodology for developing a model for the prediction of wound 

healing. Through the verification and validation, we found that it is difficult to develop one 

algorithmic model for all wound clinics due to the extensive number of factors that contribute to 

wound healing. Chapter 11 will further discuss this topic.  
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11  CHAPTER 11 ANALYSIS OF WOUND COMPUTATIONAL 

MODELS 

CHAPTER 11 
Analysis of Wound Computational Models 

The ability to predict when chronic wounds heal is a challenging task. Many chronic wounds 

become chronic because of a number of uncontrollable factors. Factors that influence the length of 

time to heal include age, weight, family history, nutrition, and compliance of the patient. Physicians 

cannot control many if any of these factors. With that understanding, the objective is to find 

the best course of treatment to efficiently heal and close the wound. Wound clinics differ greatly 

from each, providing an eye-opening experience on the quality of patient care.  

111.1  IMPLICATIONS 

The purpose of this research and study was to design and develop predictive models to estimate 

the time to heal for chronic wounds. Our research hypothesized that a predictive model and 

algorithm could be accurate and robust, provided that the predictor variables were independent of 

each other. This dissertation resulted in four distinct contributions: 1) Methodologies to design, 

develop, and implement predictive models to estimate chronic wound healing; 2) Linear, nonlinear, 

and neural network predictive algorithms to estimate time to heal for chronic wounds; 3) Using 

CAD to create a three-dimensional model of a patient’s wound to better calculate surface area and 

volume; and 4) Routine chronic wound management from an engineering perspective for wound-

care clinics.  

 

The methodology was created to develop more effective processes to track, monitor, and predict 

time to heal for chronic, nonhealing wounds. The overall methodology in Figure 7.1 shows the 

inconsistencies and limitations of current predictive methods for chronic wounds. What has since 
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materialized from the original hypothesis were smaller, parallel subprocesses that could assist in 

chronic wound-care tracking and predictive capabilities.  

 

Subprocesses include better understanding the limitations of the technology infrastructure, better 

integration and more consistent incorporation of digital imaging, and the ability to use mathematical 

algorithms to assist in approximating the time to wound closure. We further focused on how to 

understand, clean, and use large data sets to develop robust and accurate predictive algorithms.  

 

To reach the stage of algorithm development, the raw data of wounds had to be unidentified and 

cleaned. Vohra’s EMR system unidentified data before this study began, but we had to develop a 

coding and patient unidentification process for the data set from RBMC. With thousands of wound 

measurements, we developed mini processes and coding structures to ensure the quality and 

thoroughness of the data (Figure 8.3 and Figure 8.4). The mini code explorations allowed us to 

better understand the data for statistical exploration. Additionally, we developed processes and 

coding structures (Figure 8.11) to properly analyze the surface areas of wounds. Image analysis 

and boundary-detection algorithms provided a more realistic analysis and measurement of wounds 

than human measurement. Image integration in wound clinics with the right image-analysis 

software can also provide a more accurate measurement in the percentage change from week to 

week for chronic wounds than human measurement can provide. The processes and methods in 

the clinics must be efficient, more routine, and better standardized in their wound-photography 

practices.  

 

Before the visits to these wound clinics, we assumed that the incorporation of tools such as digital 

camera would be an easy adaptation. However, no modification proved easy. Clinics provide a 

specific amount of time to each patient, have a limited number of nurses, and have technology 

restrictions. Many of these clinics must focus on efficiency and patient care rather than wound 

photography. Unfortunately, there appears to be a discrepancy with regard to the value of properly 

performed wound photography and its contribution to patient and wound information. 

 

From an engineering and processes perspective, those wound clinics that incorporated 

photographs in the patient record lacked the proper tools and procedures to correctly integrate 

photos with patient wound tracking. A major issue with wound photographs is how to centralize 

patients’ photographs and EMRs. When hospitals began to migrate from paper records to 

electronic medical records, most hospitals used one EMR system for every department. 

Unfortunately, one EMR system does not meet the needs of all departments, including wound-care 
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departments. For example, wound-care clinics must record dimensions and qualitative visual 

information about the wound. Descriptive analyses about the wound’s color, density, and bacteria 

provide insight into the health of both the wound and the patient. 

 

Further, clinicians measure the progress of wounds, especially chronic wounds, by their size and 

change in size from week to week. For example, the size of a wound from week could decrease by 

as little as 0.25 cm. However, anyone measuring the wound could come up with a slightly different 

measurement; staff members in wound clinics have their own methods of measuring wounds. 

Thus, digital image processing and analysis become more important. However, a lack of 

consistency exists in wound photography. Photography issues include blurriness, external flash, 

lack of a ruler, or even a skewed perspective (Figure 11.1). Clinics can nevertheless correct these 

issues by providing staff members with proper training. A more serious issue, however, is that 

wound clinics lack wound-care statistics in their EMR systems and thus cannot connect wound 

photographs with patient records. This problem in turn makes it difficult for clinicians compare, 

monitor, and analyze changes in the wound, such as size and color, over weeks or months. These 

inefficiencies have led wound photography to be a hindrance rather than a help. 

 

One of the goals of this research was to properly determine the appropriate wound parameters 

and characteristics for predicting the time to heal for chronic wounds. Each wound clinic we visited 

contributed different insights on standard practice and patient care. Through site observation, we 

gained knowledge about what clinics require, how they report wounds conditions, and how many 

moving components contribute to how they treat nonhealing wounds. Two of the four clinic sites, 

Tufts and Morganti, enabled us to become familiar with wound-care clinic practice. We used the 

other two sites, RBMC and Vohra, for both content knowledge and physical data collection and 

acquisition. 
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(a) Blurry (b) Flash (c) No Ruler (d) Perspective 

 

FIGURE 11.1: VARIOUS IMAGING ISSUES 

We conceived this research under the assumption that the inputs to the algorithm would include a 

variety of inputs ranging from patient demographics to wound characteristics to patient health 

history. Unfortunately, that assumption proved incorrect. Instead, we received most of the data 

from the Vohra clinic rather than the hospitals. Unlike the hospitals, Vohra has its own proprietary 

wound-tracking database that allowed clinicians to document patient progress through a 

customized EMR system. With this tool, clinicians could sort, filter, and organize patient data 

based on the requirements for wound characteristics. As a result, we were able to obtain data for 

thousands of patients and thousands of wounds. Through multiple discussions and analysis, 

physicians at Vohra assisted us in determining the proper wound data based on their experience 

and clinician expertise.  

 

The ability of people to acquire patient data from medical facilities has given rise to a number of 

patient privacy laws. This limitation worked against us in the collection of data. Vohra could provide 

us only information about patient wounds, not patient demographics. The lack of access to patient 

demographics was a limitation of the study, which Section 11.2 further discusses. However, we 

were able to build a solid, robust, and accurate model based only on wound characteristics. 

 

We designed the algorithms in three phases. The first phase required us to determine the relevant 

inputs that the predictive model would include. The second phase required us to determine which 

predictive-modeling techniques best fit the data. The third phase required us to create a 

methodology that modeled wounds from two-dimensional images to three-dimensional models. 

 

To determine the relevant inputs, we used statistical analysis to verify and confirm which covariates 

were significant to the development of the model. We used box plots to find the upper and lower 

limits for each covariate. We used correlation plots to determine variables of linearity. We also used 

correlation heat maps to establish independence between covariates and statistical analysis to 
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determine the relationships among each of the predictor variables and the output. This analysis led 

us to what we hypothesized: that the size of the wound has the greatest impact on the time to 

heal.  

 

This statistical validation of the respective covariates showed that, despite the federal 

government’s procedural standardization and regulations, little consistency exists across various 

clinics in the collection of patient data. This fact makes it difficult to create a universal algorithm for 

chronic wounds based on a characteristic such as the arterial, venous, or diabetic etiology of a 

wound. From an engineering perspective, the recorded information differs among clinics. In other 

words, the data that we received from Vohra included the dimensions of the wound, the 

percentage of characteristics such as granulation and necrotic tissue, blood flow, and nutrition. 

The only common patient statistics that all four clinics consistently collected were the dimensions 

of the wound and the granulation of the wound. This limitation added a level of unexpected 

complexity to the analysis. 

 

We chose to explore multiple-regression, nonlinear-regression, and neural-network modeling 

techniques for compelling reasons. Linear regression is the simplest form of predictive modeling. 

Due to the complexity of the human body and the challenge of abnormal healing, we predicted that 

the behavior of the data would not follow a linear relationship. We did, however, believe that we 

needed to understand and analyze the data in the context of multiple linear regression. We 

explored and ultimately developed a linear model to compare the fit of the data with that of the 

other modeling techniques. We chose nonlinear regression because it includes foundation 

algorithms, such as exponential, quadratic, and logarithmic behaviors. We determined the best 

nonlinear-regression model would be based on the Cox regression algorithm.  

 

Cox regression aids survival-time and time-to-event analysis. Unlike linear regression, Cox 

regression assumes entirely independent data points. As a result, we structured the data with one 

set of parameters for each wound, allowing us to focus only on whether the wound had healed by 

the completion of the study. We chose neural-network modeling because it is the most complex 

technique for analyzing the behavior of the data to predict the time to heal. Unfortunately, unlike 

the previous two modeling techniques, the final output is not a mathematical equation but a set of 

equation parameters. Comparing these modeling techniques using the same set of data provided 

insight into the overall behavior of chronic wound healing.  
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We used three data sets to evaluate the theory that the time to heal primarily depends on the size 

and surface area of a chronic wound. Chapter 6 discusses the sample data set that we initially 

acquired for preliminary study. We used this data set to test the behavior of the data and how 

chronic wounds heal over time. For this preliminary examination, we had less information about the 

patients and their wounds. Unlike the larger set of data, this preliminary data set did not come from 

a wound clinic but from other sources. However, this data set allowed us to perform initial 

regression and neural-network analysis to see whether we could establish credible algorithms 

using only the inputs of Length 1, Length 2, and depth. This study supported the belief that we 

could accurately predict the time to heal using mathematical algorithms. 

 

The survival analysis and corresponding Cox regression proved to be a substantially better fit than 

the multiple linear-regression analysis. Using past literature and logic reasoning, we estimated that 

a chronic wound, regardless of the length of time it takes to heal, should reflect an exponential 

decline in behavior. Cox regression assumes that the behavior of the data follows an exponential 

decline and shows the relationship between the function, the analysis, and all the covariates. 

Through analysis, Cox regression enables us to examine the survival time of chronic wounds. The 

Cox regression analysis results in graphs that show the probability that the wound is healed at a 

given time t. Cox regression analysis not only provides a mathematical algorithm, but also validates 

the idea that only specific covariates truly affect the survival time of a chronic wound. Similarly, the 

descriptive statistics of the Cox model and corresponding coefficients validate how the behaviors 

of each of the variables affect the algorithm. Section 9.2 shows how each covariate affects the 

output. In other words, every time Length 1 increases by 1 cm., healing time increases by 

approximately 35%. Understanding how the variables affect the output is important in 

understanding how a unit of change affects the output using Cox regression. By understanding the 

effect of each variable, we can better predict the time to heal based on the change in surface area 

and dimensions and how each predictor variable affects the output.  

 

Additionally, Cox-regression equations differ depending on whether they include covariates. We 

further analyzed this theory in the development of the second Cox regression model, which 

includes Length 1, Length 2, and depth. We included these variables because they are the most 

common predictors we collected across all wound clinics and because we theorized that these 

covariates had the greatest effect on the time left to heal. More important, Cox regression provides 

equations to validate the hypothesis of predicting time to heal. 
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The Cox proportional hazard model depends on the baseline hazard function and its 

corresponding coefficients of the respective covariates. Cox regression reinforces the notion that 

the probability a chronic wound will survive until a specific time t and thus translates it to patient 

benefits. Regardless of whether a patient has one wound, two wounds, or five wounds, each 

wound has a unique healing trajectory. Cox regression allows the mass customization of predictive 

models for wounds based on the patient’s retrospective data (figures 9.18 and 9.19). We have 

created personalized wound-healing trajectories for the patients and their respective wounds. Cox 

regression models can also predict the best-fit regression equation and an estimated time to 

closure of a wound. Under these circumstances and with this data, this model was the most 

credible that we could create.  

 

We conjectured that the neural-network model, unlike the previous two models, would perform 

better if we categorized wounds based on their initial aspect ratio. Aspect ratios provided 

interpretive information about the shape of each wound, relative to the first record of Length 1 and 

Length 2. Aspect ratios also allowed us to make certain generalizations. For example, the neural-

network models showed that most wounds have aspect ratios of 1 to 2, representing Length 1 

and Length 2, respectively. This aspect ratio, however, did not appear to affect the total sum of 

squared errors or the RMS error in either the training or the validation scoring. Sorting this data, 

however, provided us with a general understanding of the behavior of wounds with specific aspect 

ratios. For example, we observed that the wounds with aspect ratios of 1 to 2 got larger and then 

smaller over time rather than simply becoming smaller.  

 

Neural networks provided us a framework for developing reliable, predictive models for chronic 

wounds and their time to heal. However, the development of a universal model was difficult without 

the ability to use patient demographics as additional factors within the algorithms. For various 

reasons, a number of observations supported the theory of an improbable universal predictive 

model. We observed human discrepancy across clinics that resulted in inconsistency with wound 

measurement and other factors.  

 

We also investigated the difference in clinicians’ wound-measuring techniques and a clinician and 

computerized wound-boundary determination. Clinicians have only the tools that the facilities 

provide. For most clinicians, these tools may include only a paper ruler. Given these facts, the 

accuracy and consistency of measurements from wound to wound can produce only so much 

information. We then investigated whether high-quality photographs of wounds with a ruler could 

provide more information about the size and shape of the wound. Thus, we developed a 
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combination of tools, subprocesses, and an overall methodology that produced a precise wound 

boundary and, ultimately, a three-dimensional virtual model of the wound. 

 

Three-dimensional imaging and analysis provides us with more detail pertaining to the object of 

interest  in this case, chronic wounds. Using a combination of the Adobe Photoshop image-

manipulation program, the ImageJ image-analysis program, and Matlab programming, we 

extracted the pixel location of the wound boundary over time. Through these tools, we were able 

to precisely determine the wound boundary, create a matrix of the location of the wound boundary 

using pixel coordinates, and import them as a three-dimensional spline in Solidworks. The spline 

provided the shape and dimensions of the surface area of the wound, which in turn allowed us to 

extrapolate the shape and create a three-dimensional model (Figure 8.25). 

 

In addition to developing accurate predictive models for chronic wound-healing time, we also 

pursued the development of precise three-dimensional models and representations of chronic 

wounds. The original premise of pursuing three-dimensional modeling of wounds was to determine 

whether the volume of a wound is a better indicator of wound-healing time than superficial surface 

area. By building three-dimensional models of wounds, we discovered that we could more 

precisely calculate the volume of a wound rather than estimating an approximate shape, such as a 

rectangle or an ellipse. Unfortunately, without the ability to streamline the process of acquiring the 

boundary of the wound and modeling it in Solidworks, the creation of a three-dimensional model is 

cumbersome and tedious. Although we can create three-dimensional models of wounds in real 

time, the process lacks sufficient automation to be efficient in a clinical setting. Regardless of the 

real-time factor, the development of a three-dimensional wound model could assist clinicians in 

better determining the underlying shape of a chronic wound and provide insight into how the 

wound heals. Chapter 8 shows that we can produce an accurate representation for the wound 

and successfully calculate the change in volume over time. This ability could lead to better, more 

efficient algorithms that assist in the evaluation and diagnosis of chronic wounds. 

 

In parallel with the development of three-dimensional wound models, we also investigated the use 

of thermal imaging. We based the decision to include thermal imaging in the research on the fact 

that the wounds had consistently higher temperatures than the surrounding tissue and the fact that 

the change in temperature over time could indicate healing or nonhealing of wounds. We collected 

the thermal-imaging data with the idea that average wound temperature would be a predictor 

variable within the algorithms, alongside predictors such as length and depth. With the few wounds 

that we were able to track over a short time, we discovered that the temperature did appear to 
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change. However, without more data over a longer time, it is unknown whether this change was 

due to healing or to the tolerance of the thermal imager. Unfortunately, we could not collect 

enough data to substantiate the idea that the temperature of a wound differs from that of the 

surrounding tissue. We included the work with the thermal imager because we believe the 

relationship between the temperature of a chronic wound and time could affect the healing 

trajectory of the time to heal. We strongly believe this avenue of research is worth additional 

exploratory analysis, especially with a more accurate thermal-imaging camera.  

 

Any of the predictive models indicates that it is possible to determine the difference between a 

healed and nonhealed wound through computational analysis. To arrive at that conclusion was 

more complex than simply classifying this variable as healed or nonhealed. The preprocessing of 

the data included statistical analysis using box plots, correlation plots, and heat maps to support 

the conclusion and determination of the modified healing threshold for each variable. Most wound-

care physicians we met throughout the research would agree that a healed wound measures 0 x 0 

x 0 cm and allow no other definition of a healed wound. In this case, a discrepancy arises between 

medicine and engineering. Using this measurement, the healed threshold is not possible from an 

algorithmic point of view. Instead, we used a reasonable threshold that produced accurate enough 

algorithms in comparison with actual wound data. 

 

We based the predictive models on the wounds themselves using the underpinning of survival 

analysis and Cox regression (figures 9.18 and 9.19). Using the principles and assumptions of Cox 

regression modeling, we analyzed the data set, which allowed us to construct the base algorithms 

(equations 9.3 and 10.2) in parallel with the base hazard function. This algorithmic development 

allowed us to then calculate the alternative survival function. The survival-function plot versus time 

to wound closure provided us the necessary graphical representation to estimate the 

corresponding trend line (figures 10.22 and 10.23) of the prospective wound. By fitting a spline to 

the wound-survival data, we determined and predicted when the wound will heal by solving for  in 

the spline algorithm at . The solution to  is the predicted time to heal. This solution 

represents the number of days from conception  that is, from the first visit to the wound clinic, 

  to the predicted day of fully healed or the time in days when the probability that the 

wound would survive is zero.  
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111.2  ASSUMPTIONS AND LIMITATIONS 

With the current study, the assumptions pertain primarily to the data and data collection. We have 

two primary groups of data, from Vohra and data RBMC: Data Set A and Data Set B, respectively. 

We performed the data acquisition in different ways but with similar assumptions for the two sets.  

 

Data Set A includes the data we received that had already been unidentified. We received the data 

in its rawest form, which included wound characteristics we previously discussed with the 

company. Although we requested corresponding patient demographics to accompany the wound 

information, federal HIPAA regulations prevented us from obtaining patient demographics and 

unidentifiable patient information for this data set. Because Data Set A was larger than Data Set B, 

we had to build the predictive models using Data Set A. We assumed that patient demographic 

data does not have an effect on the time to heal for chronic wounds. 

 

We were able to collect and control the data in Data Set B. Before collecting data, we had 

assumed that wound clinics would record patient demographics, such as age, weight, medical 

history, and nutrition. Unfortunately, patient demographics that we collected in the wound clinic 

limited the data set, and the assumption was incorrect. We collected only the patients’ ages and 

blood pressure. We did not have access to the patients’ entire medical records.  

 

In general, we also assumed that all clinics required clinicians to know the same standard 

measuring techniques, minimizing human variability and error in wound measurements. This 

assumption was unrealistic. All of the clinics we visited stated that the accuracy of their wound 

measurements depends on who performs those measurements. Clinicians have their own ways of 

measuring and methods of interpreting the wound boundary. This assumption and limitation are 

inherent components of predictive modeling and analysis of chronic wounds. Variability in wound 

measurement and interpretation will continue until clinics perform wound measurements using 

digital image processing and analysis.  

 

For the current study, we assumed that patient demographic did not have a substantial effect on 

the time to heal for chronic wounds. However, after assessing literature and expert opinion, we 

believe that this assumption is incorrect. We recommend that future studies include patient 

demographics in the predictive models to ensure the robustness of the algorithms. 
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12  CHAPTER 12 CONCLUSIONS AND FUTURE WORKS 

CHAPTER 12 
Conclusions and Future Works 

112.1  CONCLUSION 

The research in this dissertation has extended far beyond the expectation of just developing a 

predictive model to estimate time to heal for chronic, nonhealing wounds. We established a 

process for using and integrating both still and thermal photography in wound clinics. We 

advanced and refined a method for developing a three-dimensional model of a chronic wound, and 

we contributed mass customized methods for creating predictive algorithms for patients’ chronic 

wound-healing trajectories. These processes enable wound clinics and patients to establish trends 

and connections using retrospective and current data. The model in this research gives an 

estimated time to heal for patients’ chronic wounds rather than using a wait-and-see approach.  

 

By comparing three predictive-modeling techniques, we have concluded that linear regression is 

not a good fit for measuring chronic wound healing. The models of survival analysis and neural 

networks enable a better understanding and analysis of the behavior of chronic wounds. These 

models improve predictive capabilities from both survival analysis and neural networks. Survival 

analysis and neural networks were equally accurate, but, unlike the survival-analysis technique, 

neural networks produced large standard errors and standard deviations. Survival analysis initially 

depends on the set of covariates at  and the length of time that the wound has existed. It 

also includes the wound’s healing trajectory to predict the final time to heal. Thus, we believe that 

survival analysis is better than neural networks in accurately predicting time to heal.  

 

The results show that survival analysis allows a more comprehensive and more customized 

method of producing more accurate and robust predictive algorithms. Part of this reasoning relates 

to the lack of patient demographics and inconsistent wound data across clinics. The models use 
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only the provided predictor variables. The analysis also considers redundancy in the covariates, 

which can lead to unstable algorithms. 

 

This research proposes models and methods to predict chronic wound-healing time. By integrating 

consistency and technology into best practices, wound-care clinics can integrate real-time 

predictive modeling into daily practice. We seek to contribute to improving predictive capabilities 

and timing expectations for patients that suffer from chronic, nonhealing wounds.  

112.2  FUTURE WORK 

Future work includes promotion of certain goals for wound-care clinics in the United States. These 

goals include a better understanding of standard care; more consistent integration of technology, 

such as hybrid digital cameras; and more refined predictive models that include patient 

demographics and additional wound-predictor variables. We also hope that future research will 

refine the prototype model by adding parameters that clinicians have defined as pertinent to better 

enhance the predictability of the model.  

 

The comparison and analysis of theoretical versus actual implementation of overall standard 

wound-care practice represent a branch of research. The practice in wound-care clinics do not 

follow mandates from state and federal authorities. Further research would provide a better 

understanding of the difference between theoretical guidelines and actual practice. The next steps 

pertaining to further investigation into standardizing routine chronic-wound management and 

operating procedures in wound-care clinics are:  

• To understand regulations pertaining to the inclusion or exclusion of patient data in a 

patient record and documentation on the information that wound clinics must collect; 

To understand how to adapt the regulations to geographic locations and the economic 

stability of the clinic; and 

• To develop routine chronic-wound-management assessment tools and processes that can 

be integrated in real-time clinic settings that better streamline chronic-wound assessment. 

 

This research regarding routine chronic wound management found variability among clinics in 

techniques such as wound photography. We suggest a more comprehensive study regarding 

routine chronic-wound management and evidence-based best practices at various-sized wound 

clinics in different locations. We also suggest collection of consumer insights regarding the 

logistics, operations, and infrastructure of these facilities to create more efficient wound-care 

clinics. We also recommend an attempt to better integrate technology, which includes wound 
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EMRs and training on measuring and photographing wounds. The next steps for integrating real-

time imaging into wound care clinics are: 

• To develop a consistent and detailed training standard operating procedure and program 

to instruct clinicians in wound photography;  

• To develop a set of digital-camera specifications for photographing wounds; and 

• To develop a wound-care-specific EMR system that uses cloud-based computing to store 

patient records and images. 

 

As the cost of technology decreases, more research could focus on the use of thermal imaging 

and surface-heat analysis in chronic wound care. We believe that the temperature difference 

between a chronic wound and the surrounding tissue could have an effect on better predicting 

time to heal. With more consistent integration in clinical practice, thermography could become an 

indicator of wound-healing trajectory.  

 

Future work also includes more comprehensive predictive models using a larger variety of data 

from multiple sources. Future work should include a more comprehensive set of predictor variables 

that include both patient and wound demographics. A more inclusive algorithm may lead to a 

universal chronic-wound-healing predictive algorithm. Prospective work could also explore 

incorporating treatments within a predictive model to determine whether a treatment is healing a 

wound or failing to heal a wound. This work would involve a better understanding of how chronic-

wound-care treatments affect the healing trajectory of nonhealing wounds. This work would 

include patient demographics for each chronic wound, the use of a greater variety of data sources, 

and further exploration of the qualitative wound characteristics on wound health and wound-

healing trajectories. 
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AAPPENDIX A: PRELIMINARY STUDY RAW DATA 

Width 
(cm) 

Height 
(cm) 

Depth 
(cm) 

Weeks to Heal 
Based on 

Surface Area 
(cm^2) 

Weeks to Heal 
= Ellipsoid 

(cm^3) 

Weeks to Heal 
Natural Log 

(Cm) 

Width 
Ln 

Height 
Ln 

Depth 
Ln 

Weight 

8 12 2 24 50.3 3.18 3.92 2.08 2.48 0.69 
8 4 1 12 8.4 2.48 2.13 2.08 1.39 0.00 

12 12 2.4 52 90.5 3.95 4.51 2.48 2.48 0.88 
3 0.7 1.5 2 0.8 0.69 -0.19 1.10 -0.36 0.41 
8 6 3.5 18 44.0 2.89 3.78 2.08 1.79 1.25 

12 8 2.1 30 52.8 3.40 3.97 2.48 2.08 0.74 
5 8 1.5 11 15.7 2.40 2.75 1.61 2.08 0.41 
3 3 1.5 3 3.5 1.10 1.26 1.10 1.10 0.41 
6 6 2.3 8 21.7 2.08 3.08 1.79 1.79 0.83 
8 8 2.5 24 41.9 3.18 3.73 2.08 2.08 0.92 

3.5 3 2.5 4 6.9 1.39 1.93 1.25 1.10 0.92 
4 2.5 4 5 10.5 1.61 2.35 1.39 0.92 1.39 
3 0.4 1 1 0.3 0.00 -1.16 1.10 -0.92 0.00 
6 6 2 9 18.8 2.20 2.94 1.79 1.79 0.69 

12 8 1.1 12 27.6 2.48 3.32 2.48 2.08 0.10 
6 3 1.1 4 5.2 1.39 1.65 1.79 1.10 0.10 
6 4 1.1 5 6.9 1.61 1.93 1.79 1.39 0.10 
8 6 1 10 12.6 2.30 2.53 2.08 1.79 0.00 
4 4 1 3 4.2 1.10 1.43 1.39 1.39 0.00 
6 6 2 13 18.8 2.56 2.94 1.79 1.79 0.69 
8 6 1.5 10 18.8 2.30 2.94 2.08 1.79 0.41 
4 4 1.3 3 5.4 1.10 1.69 1.39 1.39 0.26 

6.5 2.7 0.8 3.5 3.7 1.26 1.30 1.87 0.99 -0.22 
2.5 2.4 0.6 0.9 0.9 -0.11 -0.06 0.92 0.88 -0.51 
6 4 1.3 7.8 8.2 2.05 2.10 1.79 1.39 0.26 
6 4.3 2.2 14.2 14.9 2.65 2.70 1.79 1.46 0.79 
5 3.5 0.5 2.2 2.3 0.78 0.83 1.61 1.25 -0.69 

16 12 2.8 134.4 140.7 4.90 4.95 2.77 2.48 1.03 
7 4.5 0.3 2.4 2.5 0.88 0.91 1.95 1.50 -1.20 
2 0.5 0.3 3.0 0.1 1.10 -2.54 0.69 -0.69 -1.20 

7.5 3.6 2 8.0 14.1 2.08 2.65 2.01 1.28 0.69 
10 8 1 7.5 20.9 2.01 3.04 2.30 2.08 0.00 
10 7 2 8.5 36.7 2.14 3.60 2.30 1.95 0.69 
3 2 0.2 3.5 0.3 1.25 -1.16 1.10 0.69 -1.61 
8 10 2.4 9.5 50.3 2.25 3.92 2.08 2.30 0.88 

6.5 5.5 1.3 7.0 12.2 1.95 2.50 1.87 1.70 0.26 
6 4.5 1.5 6.5 10.6 1.87 2.36 1.79 1.50 0.41 
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AAPPENDIX B: RARITAN AY MEDICAL CENTER AFFILIATION AGREEMENT 
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AAPPENDIX C: VOHRA WOUND CARE PHYSICIANS DATA AGREEMENT 
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AAPPENDIX D: THERMACAM S65 TECHNICAL SPECIFICATIONS 
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AAPPENDIX E: MATLAB CODE, DATA CLEANING 

CHANGE THE DATE 

%% Start with a clean slate 
clear all; 
close all; 
clc; 
  
%% Import Excel Data 
data = csvread('rawdata.csv'); 
[r,c] = size(data); 
  
  
%% Row Number 
  
for count=1:r 
  data(count,16)=count; 
end 
  
%% Calculate Difference in Patient Visits (Days) 
  
y=0; 
  
for x=1:r 
  if x < r 
    y = x+1; 
  end 
   
  row = data(x,16);               %ROW Number 
  newrow = data(y,16);              %Next ROW Number 
  
  if data(row,3) == 0;              %Determines First Patient Visit 
    start = data(row,2);            %Set "Patient first visit" 
  end 
   
  wound_id = data(row,1);            %Finds first instance of Wound ID 
  wound_check = data(newrow,1);         %Finds every subsequent Wound with 
the same Wound_ID 
  
  next = data(newrow,2);             %Determines the Subsequent Patient 
Visits 
     
  while wound_id == wound_check & newrow <= r   %Loop that finds the 
difference between visits for EACH patient 
     
    next = data(newrow,2); 
    diff = next - start; 
  
    data(newrow,17)=diff;    
     
    newrow = newrow + 1; 
    if newrow < r+1 
      wound_check = data(newrow,1); 
    end 
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  end 
   
end 
  
%% Write to CSV File 
csvwrite ('changeintime.csv', data); 
  

  CLEAN DATA 

%% Start with a clean slate 
clear all; 
close all; 
clc; 
  
%% Import Excel Data 
data_cleaning = csvread('cleaned_triple_minus_ones.csv'); 
[r,c] = size(data_cleaning); 
  
%% Length A: Cleaned 
  
row = 1; 
  
for count=1:r 
  if data_cleaning(count,4) <= 4.5 
    for col=1:c 
      length_a_cleaned(row,col) = data_cleaning(count,col); 
    end 
    row = row + 1; 
  end 
end 
  
[r,c] = size(length_a_cleaned); 
  
%% Write to CSV File 
csvwrite ('cleaned_length_a.csv', length_a_cleaned); 
  
%% Length B: Cleaned 
  
row = 1; 
  
for count=1:r 
  if length_a_cleaned(count,5) <= 5.5 
    for col=1:c 
      length_b_cleaned(row,col) = length_a_cleaned(count,col); 
    end 
    row = row + 1; 
  end 
end 
  
[r,c] = size(length_b_cleaned); 
  
%% Write to CSV File 
csvwrite ('cleaned_length_b.csv', length_b_cleaned); 
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TTRAINING AND TESTING DATA FOR MISSING DEPTH VALUES 

%% Start with a clean slate 
clear all; 
close all; 
clc; 
  
%% Import Excel Data 
data = csvread('cleaned_length_b.csv'); 
[r,c] = size(data); 
  
%% Separation of Training and Testing Data to Determine Missing Depth Values 
  
row = 1; 
  
for count=1:r 
  if data(count,6) == -1 
     
    for col=1:c 
      testing_depth(row,col) = data(count,col); 
    end 
    row = row + 1; 
  end 
  
end 
  
row = 1; 
  
for count=1:r 
   
  if data(count,6) > -1 
     
    for col=1:c 
      training_depth(row,col)=data(count,col); 
    end 
    row = row + 1; 
  end  
end 
   
     
  
%% Write to CSV File 
csvwrite ('training_depth.csv', training_depth); 
csvwrite ('testing_depth.csv',testing_depth); 
  

CLEANING DUPLICATES 

%% Start with a clean slate 
clear all; 
close all; 
clc; 
  
%% Import Excel Data 
cleaned = csvread('N_CleanedDataW_Duplicates.csv'); 
[r,c] = size(cleaned); 
  
%% Clean Duplicates (Round 1) 
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row = 1; 
newrow = 2; 
row2 = 1; 
  
r_temp=1; 
f_row=1; 
  
while row<=r 
  if cleaned(row,1) == cleaned(newrow,1) && cleaned(row,2) == 
cleaned(newrow,2) 
    for c_temp=1:16 
      temp(r_temp,c_temp)=(cleaned(row,c_temp)+cleaned(newrow,c_temp))/2; 
      int_cleaned(f_row, c_temp) = temp(r_temp, c_temp); 
    end 
     
    f_row = f_row+1; 
    r_temp=r_temp+1; 
     
    if row < r 
      row = row+1; 
      newrow = row+1; 
    end 
  else 
     
    for col=1:16 
      int_cleaned(f_row,col)=cleaned(row,col); 
    end 
     
    f_row=f_row+1; 
  end 
   
  row = row+1; 
   
  if row<r 
    newrow=row+1; 
  end 
end 
  
%% Size of Int_CLeaned Matrix 
[r,c] = size(int_cleaned); 
  
  
  
%% Clean Duplicates (Round 2) 
  
row = 1; 
newrow = 2; 
row2 = 1; 
  
r_temp=1; 
f_row=1; 
  
while row<=r 
  if int_cleaned(row,1) == int_cleaned(newrow,1) && int_cleaned(row,2) == 
int_cleaned(newrow,2) 
    for c_temp=1:16 
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temp(r_temp,c_temp)=(int_cleaned(row,c_temp)+int_cleaned(newrow,c_temp))/2; 
      final_cleaned(f_row, c_temp) = temp(r_temp, c_temp); 
    end 
     
    f_row = f_row+1; 
    r_temp=r_temp+1; 
     
    if row < r 
      row = row+1; 
      newrow = row+1; 
    end 
  else 
     
    for col=1:16 
      final_cleaned(f_row,col)=int_cleaned(row,col); 
    end 
     
    f_row=f_row+1; 
  end 
   
  row = row+1; 
   
  if row<r 
    newrow=row+1; 
  end 
end 
  
%% Size of Int_CLeaned Matrix 
[r,c] = size(final_cleaned); 
%% Export to CSV 
csvwrite('O_CleanedData_NO_Duplicates.csv',final_cleaned); 
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DDELETE SINGLE-VISIT WOUNDS 

%% Start with a clean slate 
clear all; 
close all; 
clc; 
  
%% Import Excel Data 
cleaned = csvread('P_DeleteSingles.csv'); 
[r,c] = size(cleaned); 
  
%% Create Completely Cleaned Matrix 
  
row = 1; 
  
for x=1:r 
  if cleaned(x,4) == 1 
    for col=1:c 
      final(row,col)=cleaned(x,col); 
    end 
    row = row+1; 
  end 
end 
  
%% 100% Cleaned Matrix 
csvwrite('100_Percent_Cleaned_Data.csv',final); 
  

FIND WOUNDS WITH MORE THAN FIVE VISITS 

%% Start with a clean slate 
clear all; 
close all; 
clc; 
  
%% Import Excel Data 
data = csvread('AB_DataWithElimDupl.csv'); 
[r,c] = size(data); 
  
  
%%  
  
start_row = 1; 
check_row = 2; 
count = 1; 
new_row=1; 
cc=0; 
  
  
while check_row < r 
   
  wound_id = data(start_row,1); 
  if start_row < r 
    wound_check = data(check_row,1); 
  end 
  
  while wound_id == wound_check; 
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    check_row = check_row+1; 
    count = count+1; 
    wound_check = data(check_row,1); 
  
  
  end 
  
%  count 
%  start_row 
  
  if count > 6 
  
    rr = start_row; 
  
    while cc < count 
      for col=1:c 
        new_data(new_row,col)=data(rr,col); 
      end 
  
      new_row = new_row+1; 
      rr = rr+1; 
      cc = cc+1; 
    end 
  
    cc = 0; 
  
  end 
  
  count = 1; 
  
  start_row = check_row; 
  
  if start_row < r 
     
    check_row = start_row+1; 
  end 
   
end 
  
%% No Duplicates 
csvwrite('AC_GreaterThan6Visits.csv',new_data); 
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TTRANSPOSE DATA BASED ON ASPECT RATIO 

%% Start with a clean slate 
clear all; 
close all; 
clc; 
  
%% Import Excel Data 
AR1 = csvread('AH_AspectRatio1.csv'); 
[AR1_r,AR1_c] = size(AR1); 
  
AR1_volume = csvread('AH_UniqueAspectRatio1.csv'); 
[AR1_new_r,AR1_new_c] = size(AR1_volume); 
  
%% Make New Data Matrix Internal Zero Cells = 999 
for x=2:AR1_new_r 
  for y=2:AR1_new_c 
    AR1_volume(x,y) = 999; 
  end 
end 
  
%% Make New Matrix for L1, L2, D 
  
for x=1:AR1_new_r 
  for y=1:AR1_new_c 
    AR1_L1(x,y) = AR1_volume(x,y); 
    AR1_L2(x,y) = AR1_volume(x,y); 
    AR1_D(x,y) = AR1_volume(x,y); 
  end 
end 
  
%% AR1_Volume 
  
row = 2; 
data_row = 1; 
  
col_of_time = 2; 
  
  
while row <= AR1_new_r 
  
   
  wound = AR1(data_row,1); 
  wound_unique = AR1_volume(row,1); 
  
  while wound == wound_unique            
  
    time = AR1(data_row,6); 
    volume = AR1(data_row,10); 
  
    while AR1_volume(1,col_of_time) ~= time && col_of_time < AR1_new_c 
      col_of_time = col_of_time+1;      
  
    end 
  
    t = AR1_volume(1,col_of_time); 
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    if t == time 
      AR1_volume(row,col_of_time) = AR1(data_row,10); 
    end 
  
  
    data_row = data_row+1; 
     
    if data_row <= AR1_r   
      wound = AR1(data_row,1); 
     
    else 
      break 
    end 
  
  
  end 
  
    row = row+1; 
    col_of_time = 2;  
     
end 
  
%% AR1_L1 
  
row = 2; 
data_row = 1; 
  
col_of_time = 2; 
  
  
while row <= AR1_new_r 
  
   
  wound = AR1(data_row,1); 
  wound_unique = AR1_L1(row,1); 
  
  while wound == wound_unique            
  
    time = AR1(data_row,6); 
  
    while AR1_L1(1,col_of_time) ~= time && col_of_time < AR1_new_c 
      col_of_time = col_of_time+1;      
  
    end 
  
    t = AR1_L1(1,col_of_time); 
  
    if t == time 
      AR1_L1(row,col_of_time) = AR1(data_row,7); 
    end 
  
  
    data_row = data_row+1; 
     
    if data_row <= AR1_r   
      wound = AR1(data_row,1); 
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    else 
      break 
    end 
  
  
  end 
  
    row = row+1; 
    col_of_time = 2;  
     
end 
  
%% AR1_L2 
  
row = 2; 
data_row = 1; 
  
col_of_time = 2; 
  
  
while row <= AR1_new_r 
  
   
  wound = AR1(data_row,1); 
  wound_unique = AR1_L2(row,1); 
  
  while wound == wound_unique            
  
    time = AR1(data_row,6); 
  
    while AR1_L2(1,col_of_time) ~= time && col_of_time < AR1_new_c 
      col_of_time = col_of_time+1;      
  
    end 
  
    t = AR1_L2(1,col_of_time); 
  
    if t == time 
      AR1_L2(row,col_of_time) = AR1(data_row,8); 
    end 
  
  
    data_row = data_row+1; 
     
    if data_row <= AR1_r   
      wound = AR1(data_row,1); 
     
    else 
      break 
    end 
  
  
  end 
  
    row = row+1; 
    col_of_time = 2;  
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end 
  
  
%% AR1_D 
  
row = 2; 
data_row = 1; 
  
col_of_time = 2; 
  
  
while row <= AR1_new_r 
  
   
  wound = AR1(data_row,1); 
  wound_unique = AR1_D(row,1); 
  
  while wound == wound_unique            
  
    time = AR1(data_row,6); 
  
    while AR1_D(1,col_of_time) ~= time && col_of_time < AR1_new_c 
      col_of_time = col_of_time+1;      
  
    end 
  
    t = AR1_D(1,col_of_time); 
  
    if t == time 
      AR1_D(row,col_of_time) = AR1(data_row,9); 
    end 
  
  
    data_row = data_row+1; 
     
    if data_row <= AR1_r   
      wound = AR1(data_row,1); 
     
    else 
      break 
    end 
  
  
  end 
  
    row = row+1; 
    col_of_time = 2;  
     
end 
%% Transposed Matrix Based on Aspect Ratio 
csvwrite('AI_AspectRatioMatrix1_Volume.csv',AR1_volume); 
csvwrite('AI_AspectRatioMatrix1_L1.csv',AR1_L1); 
csvwrite('AI_AspectRatioMatrix1_L12.csv',AR1_L2); 
csvwrite('AI_AspectRatioMatrix1_D.csv',AR1_D); 
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TTIME REMAINING 

%% Start with a clean slate 
clear all; 
close all; 
clc; 
  
%% Import Excel Data 
data = csvread('AL_ToFindTimeRemaining.csv'); 
[r,c] = size(data); 
  
%% Find Time Remaining 
  
row = 1; 
next_row = 2; 
count = 1; 
t_x=2; 
t = 1; 
  
  
while row < r 
   
  start = data(row,3); 
  start_time = data(row,6); 
  next = data(next_row,3); 
  time(1,1) = start_time; 
  
  while next ~= 0 
  
    if data(next_row,3) 
      time(t_x,1) = data(next_row,6); 
      t_x = t_x+1; 
    end 
     
    if next_row == r  
      break       
    else 
      next_row = next_row+1; 
      next = data(next_row,3); 
  
    end 
     
  end 
  
   
  t_x = t_x - 1; 
  
  while row < next_row 
    data(row, 7) = time(t_x,1); 
  
    row = row+1; 
    t_x = t_x-1; 
  end 
   
  if next_row == r 
    data(next_row,7) = 0; 
  end 
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  next_row = row+1; 
  t_x = 2; 
   
end 
  
%% Transposed Time to Heal 
csvwrite('AL_TimeRemaining.csv',data); 
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AAPPENDIX F: MATLAB CODE, IMAGE ANALYSIS AND EDGE DETECTION 

%% Start with a clean slate 
clear all; 
close all; 
clc; 
  
%% Import Excel Data 
rgb = imread('wound_rgb-2.tif'); 
% binary = imread('patient2_wound_binary_w_measurements.tif'); 
% binary = imread('patient11_wound_binary_w_measurement.tif'); 
% binary = imread('patient2_wound_binary_w_measurements.tif'); 
binary = imread('patient4_wound_outline.tif'); 
  
%% RGB Matrix 
binary_imR = squeeze(binary(:,:,1)); 
binary_imG = squeeze(binary(:,:,2)); 
binary_imB = squeeze(binary(:,:,3)); 
  
%% Edge Detection 
sob = edge(binary_imB,'sobel'); 
figure, imshow(sob) 
  
can = edge(binary_imB,'canny'); 
figure, imshow(can) 
  
%% BW Perimeter 
  
x = 1; 
new_x = 1; 
  
  
BW2 = bwperim(sob); 
  
  
[r c] =size(BW2); 
  
for row = 2:r 
 for col=1:c 
   if BW2(row,col) > 0 
     contour = bwtraceboundary(BW2, [row, col], 'W', 8,50,'clockwise'); 
                
     if(~isempty(contour)) 
        
       [c_r, c_c] = size(contour); 
        
       while contour(x,1) > 0 && x < c_r 
          
         new(new_x, 1) = contour(x,1); 
         new(new_x, 2) = contour(x,2); 
         new(new_x, 3) = 0; 
  
         x = x+1; 
         new_x = new_x+1; 
          
       end 
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       x=1; 
        
     end 
   end 
 end   
end 
  
  
%% Reduction of Points 
new_x = 1; 
next_x = 2; 
  
final_x = 1; 
  
copy = new; 
  
[r c] = size(new); 
  
while new_x < r 
  
  start(1,1) = new(new_x,1); 
  start(1,2) = new(new_x,2); 
  
    while next_x < r 
      check(1,1) = new(next_x,1); 
      check(1,2) = new(next_x,2); 
  
      if isequal(start,check) 
        new(next_x,1) = 0; 
        new(next_x,2) = 0; 
      end 
  
      next_x = next_x + 1; 
    end 
   
    new_x = new_x + 1; 
    next_x = new_x + 1; 
end 
   
%% Cleaned Final Matrix 
  
row = 1; 
  
while x < r 
  
  if new(x,1) ~= 0 
  
    final(row,1) = new(x,1); 
    final(row,2) = new(x,2); 
    final(row,3) = 0; 
  
    row = row+1; 
  
  end 
   
  x = x+4; 
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end 
  
%% Image Verification 
  
copy_image = BW2; 
row = 1; 
  
  
[r c] = size(copy_image); 
[rr cc] = size(final); 
  
for x=1:rr 
  x_point = final(x,1); 
  y_point = final(x,2); 
  
  copy_image(x_point, y_point) = 1; 
end 
  
  
  
figure, imshow(copy_image); 
figure, imshow(can); 
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