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ABSTRACT

Chronic wound is an important national healthcare problem, compounded by the fact that patients
with chronic diseases, such as diabetes, are always vulnerable to developing chronic wounds.
Wound care research has two strands: clinical and computational. On the clinical side, research
has been focusing on how to effectively treat wounds. This includes measuring wounds, tracking
their progression with time, and assessing their health. On the computational side, little has been
done to treat a wound as an engineering system that needs to be modeled and analyzed with the
ultimate goal of predicting the progress of wound healing and determining the factors that influence

wound healing.

This dissertation presents three predictive statistical models: multiple linear regression, nonlinear
regression, and neural networks and compares their performance. These models take wound
parameters such as length, width, and depth as inputs and produce the remaining time to heal as
an output. These predictive models also allow us to determine the wound parameters that are
most influential on wound healing. These models are developed and analyzed with insight gained

from four major wound clinics across the country.

The first predictive modeling technique that we analyze is multiple linear regression. We produce
various linear regression models from the inputs, such as length, width, depth granulation, and
necrotic tissue. The response variable is the time to heal for the respective wound. Since the data
being analyzed deviated considerably from the linearity, the prediction results are poor, and
confidence in the observations is weak.

The second type of predictive model constructs the foundation equation using survival analysis and
Cox regression, a form of nonlinear regression relative to time-to-event situations. Survival analysis
and Cox regression allows us to assess the relationship between the covariates and the probability

of survival. The inputs for the Cox regression algorithms were length, width, depth, and granulation.
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The output is the probability that a wound will “survive” until time t. This model provided the most

accurate prediction results.

The third and final type of predictive model is based on neural networks. We design multiple feed-
forward multilayer perceptron neural networks. They are all trained with a backpropagation
algorithm. We used the same set of inputs that are used in the nonlinear regression models. The
network output is the time it takes the wound to heal. Unlike Cox regression, the neural network
model could not be individualized and therefore gave less accurate predictions. Further, we believe
that patient demographics would have a considerable impact on the accuracy of the neural
network models.

In conclusion, the research presented in this dissertation aims to offer a framework toward
predicting chronic wound healing time. The outcomes of this project are beneficial to building a
chronic wound predictive modeling system with the capabilities of integrating two-dimensional
imaging and three-dimensional modeling with predictive analytics to provide patients and clinicians
with an estimated time to wound closure. Two important extensions of this research are to further
test and validate the assessment capabilities of using wound three-dimensional modeling by
finding and selecting high-quality wound images and to incorporate wound imaging and statistical
predictive models in an easy-to-use system for clinical practice.

www.manharaa.com




ACKNOLWEDGMENTS

The past four years have been an incredible experience that allowed me to grow and mature both
academically and professionally. | would like to take this opportunity to convey my gratitude to my
PhD dissertation advisors, Dr. Abe Zeid and Dr. Sagar Kamarthi. Dr. Zeid and Dr. Kamarthi gave
me the opportunity to pursue and develop parallel research interests in
science/technology/engineering/mathematics (STEM) education and engineering. With their
guidance, | developed the skills that are necessary to teach and solve complex problems. The
combination of two uniquely separate research experiences provided me with a more rounded
experience in how to conduct research. Through their tutelage, | learned how to approach and
analyze intricate scientific problems and leverage past literature to generate new out-of-the-box
ideas. Dr. Zeid and Dr. Kamarthi worked continuously to help me become a better critical thinker, a
more scientific writer, and a better problem solver. | cannot thank them enough for their guidance

and expertise.

There are individuals in this world who are kind enough to give their time to help a lone graduate
student. | would like to thank a handful of individuals without whose help | would not have been
successful. | would like to thank Dr. Tucker Marion for being on my committee. His insight into
product design and development helped shape my research and future career. Dr. Scott Swain
provided me with great insight beyond the world of basic statistics. Without his help, time, effort,
and energy, | would not have understood how to use statistics and analytical modeling to develop
my predictive models. His knowledge and expertise regarding how to analyze data and give
meaning to numbers is uncanny, and | could not have found a nicer, smarter individual to guide me
through the statistical analysis. Additionally, | would like to thank the wound care facilities: Tufts
Vascular, Wound, and Hyperbaric Center; John Leopold, clinical manager at Morganti Wound Care
Center; Dr. Shark Bird and Vohra Wound Care Physicians; and Andrew Citron, Dr. Michael Sears,
Dawn Johnson, RN, and the staff at Raritan Bay Medical Center. Without these wound care

facilities, | would not have been able to gather data, learn, and understand the intricacies of wound

VI

www.manharaa.com




care clinics and all that they do for their patients. Last, | would like to thank Flir Systems for

providing me with a thermal imaging camera.

Without an incredible support network behind me, | would not have been able to pursue or
complete my PhD. The core of my network is my parents. | would like to thank my parents, Tom
and Joan, for their unbelievable love, unconditional support, and continued guidance. | thank my
parents for teaching, guiding, and loving me throughout my years of education. They have offered

endless inspiration and inspired confidence for me to pursue my next challenge.

| would also like to offer my special thanks to Frank Salcie. Without his humor and emotional
support, my journey to PhD completion would have been much harder and a lot less fun. He was
there for me when | needed to brainstorm and conceptualize problems. He has taught me the skills
to approach, analyze, and solve problems from different perspectives. His support and endless
encouragement have pushed me until the end! | would also like to thank Dr. and Mrs. Francisco
and Diane Salcie, whose medical knoweldge and encouragement, helped me to reaffirm my

thoughts and analysis about chronic wound care.

| would also like to thank all my friends for all their support through the years. Special thanks to
Keenan McLaren and Martha Legocki, my two very best friends since high school. | would also like
to thank John and Arlene Mclaren for their constant love, support, and encouragement! And |
would also like to thank Dr. and Mrs. Brian and Maria Coan for their continued friendship and

support!

Finally, | would like to thank the individuals in the Modeling, Analysis, and Prediction Laboratory:
Amal Al-Husseini, llke Boyaci, Arjun Duvvuru, Srinivasan Radhakrishnan, Gulam Moeen Uddin, and
Tony Sultornsanee. It has been a great pleasure to work with you and be your colleague.

VI

www.manharaa.com




TABLE OF CONTENTS

ABSTRACT \Y
ACKNOLWEDGEMENTS Vi
TABLE OF CONTENTS ill
LIST OF FIGURES XI
LIST OF TABLES XV
1 CHAPTER 1 INTRODUCTION 2
1.1 OVERVIEW 2
1.2  MOTIVATION 4
1.3 OPEN RESEARCH ISSUES 5
1.4 PROBLEM DEFINITION AND OBJECTIVE 7
1.5 PROPOSED SOLUTION 7
1.6 DISSERTATION CONTRIBUTION 9
2 CHAPTER 2 LITERATURE REVIEW 14
2.1 INTRODUCTION 14
2.2 WOUND TOPOLOGY MODELING 15
2.3 PREVIOUS STUDIES: A REVIEW OF WOUND ASSESSMENT TECHNIQUES 15
2.4 NONINVASIVE WOUND MEASUREMENT TECHNIQUES 20
2.5 SUMMARY 20
3 CHAPTER 3 CHRONIC WOUNDS 24
3.1 BIOLOGY OF A WOUND 24
3.2 WOUND HEALING 26
3.3 WOUND CLASSIFICATIONS 27
3.4 CHRONIC WOUNDS ON LOWER APPENDAGES 28
3.5 WOUND TREATMENTS 29
3.6 ISSUES IN WOUND CARE CLINICAL PRACTICE 30

Vil

www.manharaa.com




4 CHAPTER 4 WOUND ASSESSMENT METHODS 36

4.1  CURVATURE-MAPS-BASED METHOD 36
4.2 THREE-DIMENSIONAL CONSTRUCTION-BASED METHOD 37
4.3 DIGITAL CONSTRUCTION-BASED METHOD 37
4.4  COMMERCIAL SYSTEMS 38
4.5 TELEMEDICINE WOUND MANAGEMENT 40
4.6 EXSTING PREDICTIVE METHODS 42
4.7  SUMMARY 43
5 CHAPTER 5 WOUND PARAMETERS 45
5.1 TUFTS VASCULAR, WOUND, AND HYPERBARIC CENTER 45
5.2  MORGANTI WOUND CENTER AT DANBURY HOSPITAL 46
5.3 RARITAN BAY MEDICAL CENTER: THE CENTER FOR WOUND CARE 48
5.4  VOHRA WOUND CARE PHYSICIANS 48
5.5 WOUND CARE CLINIC SUMMARY 49
5.6 INDEPENDENT PARAMETER CORRELATIONS AND RELATIONSHIPS 50
5.7 PARAMETER CORRELATION 53
5.8 SUMMARY 53
6 CHAPTER 6 PRELIMINARY STUDY 55
6.1  DATA COLLECTION 55
6.2 STATISTICAL IMPLICATIONS 59
6.3 MODEL VALIDATION AND VERIFICATION 62
6.4 SUMMARY 64
6.5 LIMITATIONS 64
6.6 PRELIMINARY STUDY ANALYSIS 65
7 CHAPTER 7 WOUND HEALING MODELING METHODOLOGY 67
7.1 METHODOLOGY OVERVIEW 67
7.2 REGRESSION ANALYSIS 69
7.3 NONLINEAR-REGRESSION ANALYSIS 71
7.4 NEURAL-NETWORK ANALYSIS 73
7.5 THREE-DIMENSIONAL CAD GEOMETRIC MODEL 7
7.6 THERMAL-IMAGING (THERMOGRAPHY) MODEL 79
7.7  SUMMARY 84
8 CHAPTER 8 WOUND DATA COLLECTION, PREPROCESSING 86
8.1 DATA COLLECTION 86
8.2 DATA-MINING METHOD SELECTION 88
8.3 DATA PREPROCESSING: STAGE | 90
8.4 GEOMETRICAL ANALYSIS 99

www.manharaa.com




8.5 DATA PREPROCESSING: STAGE |l

114

8.6 SUMMARY 150
9 CHAPTER 9 WOUND HEALING PREDICTIVE MODEL 153
9.1 MULTIPLE LINEAR REGRESSION 1563
9.2 NONLINEAR REGRESSION: SURVIVAL ANALYSIS 154
9.3 NEURAL-NETWORK ANALYSIS 173
9.4 VALIDATION 188
10 CHAPTER 10 MODEL VALIDATION AND VERIFICATION 196
10.1  OVERVIEW 196
10.2  DATA COLLECTION 198
10.3  THREE-DIMENSIONAL SURFACE PLOTS 203
10.4  VALIDATING PREDICTIVE MODELS AND THE METHODOLOGY 216
11 CHAPTER 11 ANALYSIS OF WOUND COMPUTATIONAL MODELS 231
11.1  IMPLICATIONS 231
11.2  ASSUMPTIONS AND LIMITATIONS 240
12 CHAPTER 12 CONCLUSIONS AND FUTURE WORKS 242
12.1 CONCLUSION 242
12.2  FUTURE WORK 243
APPENDIX 245
APPENDIX A: PRELIMINARY STUDY RAW DATA 246
APPENDIX B: RARITAN AY MEDICAL CENTER AFFILIATION AGREEMENT 247
APPENDIX C: VOHRA WOUND CARE PHYSICIANS DATA AGREEMENT 251
APPENDIX D: THERMACAM S65 TECHNICAL SPECIFICATIONS 255
APPENDIX E: MATLAB CODE, DATA CLEANING 256
APPENDIX F: MATLAB CODE, IMAGE ANALYSIS AND EDGE DETECTION 269
REFERENCES 273

www.manharaa.com



LIST OF FIGURES

FIGURE 1.1: INPUT — ANALYSIS - OUTPUT......... . es2eee R R AR 1R R R R R R R 10
FIGURE 2.1: EXAMPLE OF WOUND MODELING IN SOLIDWORKS™ SOFTWARE «.uuvveeessssnreeesssssssessssssssssesssssssmssssssssssmsssssssssesssssssssessesss 15
FIGURE 2.2:, BARONE ET AL. WOUND IMAGES FROM DIFFERENT IMAGING MODALITIES [22] ..counnee.. 17
FIGURE 2.3: APPROXIMATE GEOMETRIC SHAPE ESTIMATIONS OF WOUNDS [52]ccetuuurreeesssumreeesssssssessssssmssesssssssesssssssssesssssssssesseses 19
FIGURE 3.1: EARLY PHASE OF WOUND HEALING........ . eeeee RS R R R AR R R R 27
FIGURE 3.2: EARLY PHASE OF WOUND HEALING........ . eeeee RS R R R AR R R R 27
FIGURE 3.3: SCHEMATIC DIAGRAM OF ANATOMY OF SKIN [2, 7 1] evvveeeeumrereessssmsesesssssmssssssssssmsssssssssssssssssssssesssssssssssssssssssssssssssessesss 28
FIGURE 3.4: WOUND DIAGNOSTIC TRIANGLE DILEMMA ...... .32
FIGURE 3.5: SUMMARY OF RBMC PATIENT PROCEDURE ..cuuuureeesssssnresssssssmsssssssssssssssssssssssssssssssssssssssnns .34
FIGURE 4.1: VISITRAK TRACING METHODOLOGY [BO] cvvvveerusurreeeesssmmreessssmsseressssssmssssssssssssssssssssesssssssssssssssssssssssssssssssssssssssesssssssnsesss 39
FIGURE 4.2: VERG WOUND MEASUREMENT SYSTEM [52]..ccurieneerereeseesseesessesssssssssssssesssssssssssssesssens .39
FIGURE 4.3: MAVIS-II THREE-DIMENSIONAL WOUND MEASUREMENT INSTRUMENT [48, 53] .. .40
FIGURE 4.4: WOUNDSMART® APP USER INTERFACE [83]..cuiereerrermeerermerseerssessseessesssesssesssesssssnees 41
FIGURE 4.5: WOUND ANALYZER APP USER INTERFACE [84] ..ovvveriereereereensessesssessssssesssessesssesssssssssens 42
FIGURE 5.1: CORRELATION PLOT DISPLAYED AS HEAT MAP . . S .51
FIGURE 5.2: CORRELATION SCATTER PLOT....... . RS R R R R R S R R R R R S R R SRR 52
FIGURE 6.1: WOUND IMAGES OF A PATIENT’S HEEL WOUND ........ . S .57
FIGURE 6.2: GRAPH OF RAW DATA AND THEIR ESTIMATED REGRESSION EQUATIONS vvcteruumereeeessssmrsesssssssmseessssssssssssssssssssssssssssssess 58
FIGURE 6.3: DISTRIBUTION OF TIME TO HEAL IN WEEKS ... .64
FIGURE 7.1: TIME TO HEAL CHRONIC METHOD . et AR R R AR SRR R R 68
FIGURE 7.2: NEURON MODEL [100]....... . e eeeees .74
FIGURE 7.3: LEARNING WITH A TEACHER [100]......... . PP 75
FIGURE 7.4: LEARNING WITHOUT A TEACHER, REINFORCEMENT LEARNING [100] ..uurvveeersureeeessssmrressssssmmseessssssssssssssssessssssssssesseses 76
FIGURE 7.5: UNSUPERVISED LEARNING [L00].cuuctiuuiuueuiesriessessiessessesssssesssssssessssssessesssessssssessssssessssssssssssssssssssssssssssssssssssssssssssssssssssssssnees 76
FIGURE 7.6: EDGE DETECTION TO SPLINE CREATION METHODOLOGY ... .78
FIGURE 7.7: CIELAB COLOR SPACE [105, 106]......... . PP 79
FIGURE 7.8: IMAGE PROCESSING FOR THERMAL IMAGING IN MEDICINE [53].uumrreeessumreeeessssmseeessssssssessssssessessssssssssssssssssssssssssssesss 82
FIGURE 7.9: CALCULATION OF TI/WOUND INFLAMMATORY INDEX [14] AT BASELINE FOR THE TEST SUBJECT [109]. cvccorrmnnreee 83
FIGURE 8.1: IRB PROCESS FOR RBIMC AND VOHRA.....cvvveesssseeeessssssssesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssseses 88
FIGURE 8.2: DATA-PREPARATION METHODOLOGY weuuuuereeeesssseeeessssssseessssssseessssssssesssssssssssesssssssessssssssssssssssssssssssssssssssesssssssssssssssssssesseses 89

X

www.manharaa.com



FIGURE 8.3: INDEPENDENT VARIABLE-DATA PREPARATION ...ooueueuemesressessessessessessesssssessesssssesssssssssssessssssssssssssessssssssssssssssssssssssssssnseans 90
FIGURE 8.4: MATLAB® METHODOLOGY TO CLEAN DATA ...oieieceeececeseseesessessessessesssssessesssssessssssssessssssssessssssssessssseens .- 91

FIGURE 8.5: BOX PLOTS OF LENGTH T ouucuiuuiteeusetsssssesssesssesstsseesssssssssesssssssssssssesssssssessesssessssssessssssessssssssssssssssssssssssssssssssssssssssssssssassssessnss
FIGURE 8.6: BOX PLOTS OF LENGTH 2 ..cveueeeeeurererrerrenrennens
FIGURE 8.7: BOX PLOTS OF LEFT AND RIGHT DOPPLER ....c.overernennee

FIGURE 8.8: BOX PLOTS OF PREALBUMIN AND ALBUMIN
FIGURE 8.9: SUBNEURAL-NETWORK METHODOLOGY FOR MISSING DEPTH VALUES ....covuureeerrersessersesssesesssssessesssssessesssssssssssessesssssnnss
FIGURE 8.10: BOX PLOTS OF DEPTH AFTER PREDICTED VALUES ....covvueererrernessersessesserseenes

FIGURE 8.11: IMAGE-ACQUISITION AND -~ANALYSIS METHODOLOGY c.uveueueuesessessessessessessessessessessessessesssssssssssessesssssessesssssessssssssessssas
FIGURE 8.12: PATIENT 11 IMAGE ANALYSIS ..covuriereereereerersesseesessseseenees .- P

FIGURE 8.13: PATIENT 11: WOUND EDGE ...ovviurereereereererneeseesersssseesessessessessessesnees e ————

FIGURE 8.14: PATIENT 2: RGB IMAGE AND BINARY IMAGE WITH SCALE ..cvvureereereererseeseerersseeens

FIGURE 8.15: PATIENT 2: WOUND EDGE ...ctuurtuieunieeuseesssessesseesessesssessesssesssssssssssssssssssssssssssssssssssssssssssssesssessssssesssessssssssssssessssssessssssssns
FIGURE 8.16: PATIENT 2: WOUND-EDGE TWO-DIMENSIONAL MATRIX OF XY COORDINATES
FIGURE 8.17: PATIENT 41 IMAGE ANALYSIS weueuuettereeesseeseesseseesssssesssssessessessessessessessessssssssessessessessessessessessssssssessssssssesssssesssssssssassssssessssans
FIGURE 8.18: PATIENT 4: WOUND EDGE ...outuiurtrsieereeseseesessessssssesssessessessessessessssssssssssssessessessessessessessessessssssssssssssssssssessssssssessssssssessssaes
FIGURE 8.19: PATIENT 4 FINAL WOUND OUTLINE ANALYZED IN MATLAB....cuteueureseeressessessessessessessessessessssssssssssssessesssssesssssssssssssss
FIGURE 8.20: FLIR THERMACAM S65 THERMAL-IMAGING SYSTEM ...cueuuienereesesessssssessssssssssssssssesssssssssessssssessssssssssssssssssssssssens
FIGURE 8.21: PATIENT 15 IMAGE COMPILATION uucutuutuuieueessesssesesseessessssssssssessesssesssssssssssssesssesssssssssssssesssssssssssssssssssssssssssssssssssssssssnsas
FIGURE 8.22: PATIENT 2 PIXEL-TO-CENTIMETER CONVERSION ...vutuuieueessessessessessessessessessessessessessessesssssessessessessesssssessssssssessssssssesssas
FIGURE 8.23: SCANTO3D METHODOLOGY ..ceeeeererereeseesersesseesesssssessssssssssssssssenees P

FIGURE 8.24: BOUNDARY-TRACE PROCESS ...covvureererreereererseesensessseseeees .- e ——

FIGURE 8.25: VARIOUS VIEWS OF PATIENT 11’S WOUND SHAPE AND BOUNDARY ...cuvurmereureeneseesssssssssssssssssssssssssssssssssssseseens
FIGURE 8.26: ASPECT RATIO OF LESS THAN 1, VOLUME VERSUS TIME ...ovvuteueueeuessessessessessessessessessessesssssessssssssesssssessssssssessssssssessssses
FIGURE 8.27: ASPECT RATIO OF LESS THAN 1, VOLUME VERSUSTIME ....uccteueueeaessessessessessessessessessessessessessssssssesssssessesssssessssssssessssss
FIGURE 8.28: ASPECT RATIO OF LESS THAN 1, LENGTH 1 VERSUS TIME

FIGURE 8.29: ASPECT RATIO OF LESS THAN 1, LENGTH 1 VERSUS TIME

FIGURE 8.30: ASPECT RATIO OF LESS THAN 1, LENGTH 2 VERSUS TIME

FIGURE 8.31: ASPECT RATIO OF LESS THAN 1, LENGTH 2 VERSUS TIME
FIGURE 8.32: ASPECT RATIO OF LESS THAN 1, DEPTH VERSUS TIME ...ovvuveieureseeressessessessessessessessessessessssssssssssssesssssessssssssessssssssessssss
FIGURE 8.33: ASPECT RATIO OF LESS THAN 1, DEPTH VERSUS TIME ...tvuteieeeeressessesessessessessessessessessessssssssessessessesssssssssssssssssessssns
FIGURE 8.34: ASPECT RATIO OF 1 TO 2, VOLUME VERSUS TIME ...ocvurereererreererreereesernenns

FIGURE 8.35: ASPECT RATIO OF 1 TO 2, VOLUME VERSUS TIME ...ccmtueeriemeeeesseessesseenes

FIGURE 8.36: ASPECT RATIO OF 1 TO 2, LENGTH 1 VERSUS TIME ....ovurvereererreererrerneererseenes

FIGURE 8.37: ASPECT RATIO OF 1 TO 2, LENGTH 1 VERSUS TIME.....ocsurerrerremrerrerseesersennes

FIGURE 8.38: ASPECT RATIO OF 1 TO 2, LENGTH 2 VERSUS TIME ....oeurvureererrerrerresseerersennas

FIGURE 8.39: ASPECT RATIO OF 1 TO 2, LENGTH 2 VERSUS TIME ....oeurvureererreererrerneererneens

FIGURE 8.40: ASPECT RATIO OF 1 TO 2, DEPTH VERSUS TIME ....ccuteeeseeseesessessessessessessessessessessessessessessessesssssessesssssessssssssssssssssssssssas
FIGURE 8.41: ASPECT RATIO OF GREATER THAN 2, VOLUME VERSUS TIME......ccstureeresresressessessessessessessesssssessesssssessesssssessssssssessssas

FIGURE 8.42: ASPECT RATIO OF GREATER THAN 2, LENGTH 2 VERSUS TIME.....octueresresresressessessessessessesssssessesssssesssssessessssssssessssns

Xl

www.manharaa.com




FIGURE 8.43: ASPECT RATIO OF GREATER THAN 2, DEPTH VERSUS TIME.....ccteieurerrerersessessessessessessessessesssssessesssssessesssssessssssssessssss

FIGURE 8.44: WOUND-HEALING TRAJECTORY APPROACHING AN ASYMPTOTE OF 0 ..ovueueuerrenresressessessessessessessessessessessesssssessessesnes
FIGURE 8.45: VOLUME BOX PLOT FOR AN ASPECT RATIO OF T .vuueueeureeeseenesessssssssssssssssssssssssssssssssssssssssssssssssesssessssssesssssssssssssssens
FIGURE 8.46: VOLUME BOX PLOT FOR ASPECT RATIO OF 2
FIGURE 8.47: LENGTH 1 BOX PLOT FOR ASPECT RATIO GREATER THAN 1 AND LESS THAN 2 ....
FIGURE 8.48: LENGTH 2 BOX PLOT FOR ASPECT RATIO GREATER THAN 1 AND LESS THAN 2 ...
FIGURE 8.49: DEPTH BOX PLOT FOR ASPECT RATIO OF GREATER THAN 1 AND LESS THAN 2....vmrirererreereerernesseesessessessessessersens
FIGURE 8.50: VOLUME BOX PLOT FOR ASPECT RATIOS=3 ...t sssessessesssessessssssssssssssssss st sesssessssssesssssssssssssnsens
FIGURE 8.51: LENGTH 1 BOX PLOT FOR ASPECT RATIO > 2 ..oueuiueereeneesesssesssessessssssssssssssssssssssssssssssssssssssessssssssssessssssssssesssssssssssssssens
FIGURE 8.52: LENGTH 2 BOX PLOT FOR ASPECT RATIO > 2 ..oeuiureereenetnesssessssssesssessssssssssssssssssssssssssssssssssesssssssessessssssssssessssssssssssssens
FIGURE 8.53: DEPTH BOX PLOT FOR ASPECT RATIO OF GREATER THAN 2 w.cucuiuuereseesessessessssssssssssssssssssssssessssssessesssssssssssssssssssens
FIGURE 9.1: SURVIVAL FUNCTION AT MEAN OF COVARIATES ..cuvutuueeuseseesseseessessessessessessessessessessessessessessessessessessessesssssssssssssssssssssssssssas
FIGURE 9.2: ONE MINUS SURVIVAL FUNCTION AT MEAN OF COVARIATES ...ccueueeueuresessessessessessessessessessessessssssssssssssessssssssessssssssessssas
FIGURE 9.3: HAZARD FUNCTION AT MEAN OF COVARIATES w..cuvuueescessessessessessessessessessessessessessessessessessessessessesssssessesssssesssssssssssssssssssnsas
FIGURE 9.4: SURVIVAL FUNCTION AT MEAN OF COVARIATES ...uvutuuceuseseeseeseessessessessessessessessessessessessessessessessesssssessesssssssssssssssssssssssssssas
FIGURE 9.5: SURVIVAL FUNCTION DIFFERENTIATED BY ASPECT RATIOS ...ovvvueveeenereenseesesseenees

FIGURE 9.6: BASELINE CUMULATIVE HAZARD ...ovureuttieserssseesssssssessesssssssssssssssesssssessesssssssssssssssssassessessesssssessesssssessessessessssssssesassssssesssnes
FIGURE 9.7: SURVIVAL FUNCTION AT MEAN OF COVARIATES ....vutuuerseeseeseessessessessessessessessessessessessessessessessessesssssessesssssessssssssessssssssesssas
FIGURE 9.8: L0oG-MINUS-LOG PLOT........ e ——————— e

FIGURE 9.9: BASELINE CUMULATIVE HAZARD ...ovuetitieseresseesessessessesssessssssseessesssssessessssssssssssssesssssessessessessessesssssessessessessssssssssassssssesssnes
FIGURE 9.10: NEURAL-NETWORK MODEL FOR DATA WITH ASPECT RATIO OF LESS THAN 1 ...ouvmrierereereereererneeserseesessesssssessenennas
FIGURE 9.11: LIFT CHART FROM NEURAL-NETWORK MODEL FOR DATA WITH AR < 1, TRAINING DATASET ..ovvvrurrerrererersnnnns 176
FIGURE 9.12: LIFT CHART FROM NEURAL-NETWORK MODEL FOR DATA WITH ASPECT RATIO OF LESS THA 1, VALIDATION
DATA SET ......... S

FIGURE 9.14: NEURAL-NETWORK MODEL FOR DATA WITH ASPECT RATIO GREATER THAN 1 AND LESS THAN 2
FIGURE 9.15: NEURAL NETWORK MODEL FOR DATA WITH 1< ASPECT RATIO < 2 AND RBMC....covvvverreeerrreneens
FIGURE 9.16: NEURAL-NETWORK MODEL FOR DATA WITH ASPECT RATIO 1 AND RBMC.....covvireeercereeeeeeeeeenns

FIGURE 9.17: NEURAL-NETWORK MODEL FOR DATA WITH ASPECT RATIO GREATER THAN 2, RBMC.....orirerrererereerernenns
FIGURE 9.18: EXAMPLE OF SURVIVAL FUNCTION VS. TIME FOR SAMPLE WOUNDS (VARIABLES: LENGTH 1, LENGTH 2, DEPTH,

GRANULATION) wcuvtvueeuseessesseessessesssesssessesssessesssessesssessesssesssessssssssssssssssssssessssssesssesssessesssessesssesssessssassssesssssssssssssesssssssessessssssesssnsssessnssnes 190
FIGURE 9.19: EXAMPLE OF SURVIVAL FUNCTION VERSUS TIME FOR SAMPLE WOUNDS (ALL VARIABLES) wecuuueeeessssmrsessssssensees 191
FIGURE 10.1: BOX PLOTS FOR RBMC DATA ..corrreeernrreeesssssseessssnns . AR R RS eEnnssRRe 197
FIGURE 10.2: LENGTH 1 VERSUS TIME..uuuuevveetsususeeesssssseseesssssssssesssssssssessssssssesssssssssesessssssssesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnees 199
FIGURE 10.3: LENGTH 2 VERSUSTIME .uuuuevevetsssuseessssssseseesssssssesesssssssssessssssssesssssssssesessssssssessssssssssesssssssssssssssssssssssesssssssssssssssssssssssssnees 200
FIGURE 10.4 DEPTH VERSUS TIME wvvvtuuuuereeessssseseesssssssessessssssssessssssssesessssssesssssssssssssssssssssesssssssssesssssssssssssssssssssssessssssssssssssssssssssssssnees 201
FIGURE 10.5: VOLUME VERSUS TIME w.ouuuuereeetsssseseesssssssessesssssssssessssssssesesssssssssessssssssesessssssssessssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnees 202
FIGURE 10.6: SURFACE PLOT: TIME TO HEAL AGAINST LENGTH 1, LENGTH 2 (QUADRATIC FIT) seovvveeeumnreeeessmennessssssneesssssnee 204
FIGURE 10.7: SURFACE PLOT: TIME TO HEAL AGAINST LENGTH 1, LENGTH 2 (SPLINE FIT)uvvccouumrreeessmnreeesssesnessssssssssssssssnee 205
FIGURE 10.8: SURFACE PLOT: TIME TO HEAL AGAINST LENGTH 1, LENGTH 2 (LINEAR FIT) cocctuumrreeessmnreessssensessssssssssssssssnee 206

XIll

www.manharaa.com




FIGURE 10.9: SURFACE PLOT: TIME TO HEAL AGAINST LENGTH 1, LENGTH 2 (QUADRATIC FIT).... 207
FIGURE 10.10: SURFACE PLOT: TIME TO HEAL AGAINST LENGTH 1, LENGTH 2 (SPLINE FIT)......... 208
FIGURE 10.11: SURFACE PLOT: TIME TO HEAL AGAINST LENGTH 1, DEPTH (LINEAR FIT)... 209
FIGURE 10.12: SURFACE PLOT: TIME TO HEAL AGAINST LENGTH 1, DEPTH (SPLINE FIT).... 210
FIGURE 10.13: SURFACE PLOT: TIME TO HEAL AGAINST LENGTH 1, DEPTH (LINEAR FIT)... 211
FIGURE 10.14: SURFACE PLOT: TIME TO HEAL AGAINST LENGTH 1, DEPTH (LINEAR FIT)... 212
FIGURE 10.15: SURFACE PLOT: TIME TO HEAL AGAINST LENGTH 2, DEPTH (QUADATIC FIT)......... 213
FIGURE 10.16: SURFACE PLOT: TIME TO HEAL AGAINST LENGTH 2, DEPTH (SPLINE FIT).... 214
FIGURE 10.17: SURFACE PLOT: TIME TO HEAL AGAINST LENGTH 2, DEPTH (LINEAR FIT)... 215
FIGURE 10.18: SURVIVAL FUNCTION AT MEAN OF COVARIATES ..cuvuteueeseeseessessessessessessessessessessessessessesssssessessessessesssssessssssssessssssssessssas 219
FIGURE 10.19: HAZARD FUNCTION, RBMUC ...t ssssessessessessessss s sesss st ssssssssesns .220
FIGURE 10.20: ONE MINUS SURVIVAL FUNCTION AT MEAN OF COVARIATES ...cueueeueeseessessessessessessessessessessessessessessessessessessesssssessssses 221
FIGURE 10.21: LOG MINUS LOG FUNCTION w.cueutvureseeseesseseesseseessessessessessessessessessessesssssessessessessesssssessessssssssssssssssssssssssssssessessesaes 222
FIGURE 10.22: EXAMPLE OF SURVIVAL FUNCTION Vs. TIME FOR SAMPLE WOUNDS (VARIABLES: L1, L2, D), RBMC............. 223
FIGURE 10.23: EXAMPLE OF SURVIVAL FUNCTION VS. TIME FOR SAMPLE WOUNDS (VARIABLES: L1, L2, D), RBMC............. 224
FIGURE 11.1: VARIOUS IMAGING ISSUES w.ucuutuueuerresereseesessesssssssssssesssssssssessessessessssssssssssssesssssessessessessessessessessesssssesssssessesssssessessessessesssnes 234

XV

www.manharaa.com



LIST OF TABLES

TABLE 2.1: SUMMARY OF ONE-, TWO-, AND THREE-DIMENSIONAL MEASUREMENT ASSESSMENT TECHNIQUES [33]

TABLE 5.1: WOUND ASSESSMENT, PHYSICAL ASSESSMENT PARAMETERS PROCEDURES FOR PRACTITIONERS [2] ..ovvvevneeeenneens

TABLE 5.2: SUMMARY OF WOUND-ASSESSMENT PROCEDURES FOR PRACTITIONERS [2].veueueeeeeenessessessesssesssssesssessssssessssssesssesns 48
TABLE 5.3: SUMMARY OF ASSESSMENT PROCEDURES FOR PRACTITIONERS......cccreereennes .- e —————— 49
TABLE 6.1: DATA-COLLECTION COMPONENTS. .- .- ——— .- e —————— 56
TABLE 6.2: INPUT FACTORS FOR ALGORITHM .. .- .- .- .- .- e —————— 59
TABLE 6.3: CORRELATIONS AMONG VARIABLES ......... .- e ———— .- .- e ——— 61
TABLE 6.4: SUMMARY OF PARAMETER ESTIMATES FOR MULTIPLE-REGRESSION MODEL...... .- .- 61
TABLE 6.5: MODEL TEST DATA ... .- .- .- .- .- e 63
TABLE 7.1: CALCULATION OF THERMAL INDEX/WOUND INFLAMMATORY INDEX RESULTS [109] .- .- ..84
TABLE 8.1: SUMMARY OF BOX-PLOT STATISTICS OF INDEPENDENT VARIABLES............ .- e ——————— 95
TABLE 8.2: COMPUTATION OF INDEPENDENT VARIABLES FOR LOWER AND UPPER WHISKERS OF BOX PLOTS...c.coieeeeeceeereenees 96
TABLE 8.3: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS... .- e 97
TABLE 8.4: INTERLAYER CONNECTIONS WEIGHTS .uveueuesessessessessessessessessessessessessessssssssesssssessessessessesssssessssssssesses e ———— 98
TABLE 8.5: TRAINING AND VALIDATION DATA-SCORING REPORT .- .- ——— .- ..98
TABLE 8.6: TRAINING AND VALIDATION DATA-SCORING REPORT .- .- ——— .- ..98
TABLE 8.7: FIGURE 8.12 GEOMETRIC ANALYSIS RESULTS .. .- .- .- .- rre——— 101
TABLE 8.8: IMAGE STATISTICS ...... .- .- .- .- .- ——— .- 102
TABLE 8.9: FIGURE 8.14 GEOMETRIC ANALYSIS RESULTS .. .- .- .- .- rre——— 103
TABLE 8.10: IMAGE STATISTICS.... 103
TABLE 8.11: FIGURE 8.12 GEOMETRIC ANALYSIS RESULTS 105
TABLE 8.12: IMAGE STATISTICS.... 105
TABLE 8.13: FIGURE 8. GEOMETRIC ANALYSIS RESULTS...... 109
TABLE 8.14: GEOMETRIC ANALYSIS RESULTS.. .- .- .- .- .- e ————— 110
TABLE 8.15: PATIENT 11 HUMAN WOUND MEASUREMENTS........ .- .- e .- e ———— 112
TABLE 8.16: PATIENT 11 SOLIDWORKS WOUND MEASUREMENTS........... .- ——— .- 112
TABLE 8.17: COMPUTATION OF INDEPENDENT VARIABLES FOR LOWER AND UPPER WHISKERS OF BOX PLOTS...coovvvererieeenees 136
TABLE 8.18: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS ...cevureurerreerernessenerseeseens ——— . 137
TABLE 8.19: NEURAL-NETWORK PARAMETERS, ASPECT RATIO LESS THAN 1 .- .- e ——— . 137
TABLE 8.20: TRAINING- AND VALIDATION-DATA SCORING REPORT....... .- .- e .- .- 138

XV

www.manharaa.com




TABLE 8.21: COMPUTATION OF INDEPENDENT VARIABLES FOR LOWER AND UPPER WHISKERS OF BOX PLOTS...covveeureeiereenees 138

TABLE 8.22: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS ...covvurerreereerernesseserseeseens ——— . 139
TABLE 8.23: NEURAL-NETWORK PARAMETERS, ASPECT RATIO OF LESS THAN 1 ...ovvuereerenrersessersesseesessesse e sessesssssessessssesnees 139
TABLE 8.24: TRAINING- AND VALIDATION-DATA SCORING REPORT .....cvuirerremreseenresreseessessessessessessessessssssssessesssssesssssessesssssessssssssesnees 139
TABLE 8.25: COMPUTATION OF INDEPENDENT VARIABLES FOR LOWER AND UPPER WHISKERS OF BOX PLOTS ...ovoueveennernenne 140

LESS THAN 2 cortitistsnisssssssssssssssssssss s ssss s ss bbb bbb RS R AR R AR R 141
TABLE 8.27: TRAINING- AND VALIDATION-DATA SCORING REPORT .....cvueureuerreseenresressessessessessessessessessssssssessesssssessssssssesssssesssssssesnees 141
TABLE 8.28: NEURAL-NETWORK PARAMETERS, ASPECT RATIO OF GREATER THAN 1 AND LESS THAN 2 ...covverererreereererreereenens 142
TABLE 8.29: COMPUTATION OF INDEPENDENT VARIABLES FOR LOWER AND UPPER WHISKERS OF BOX PLOTS...covvereereeiereenees 144
TABLE 8.30: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS ...cevvurereererreressenerseeseens ——— . 144
TABLE 8.31: TRAINING AND VALIDATION DATA SCORING REPORT ..coeueueuenesressessessessessessessessessessessessssssssessesssssessssssssesssssessssssssssnees 145
TABLE 8.32: COMPUTATION OF INDEPENDENT VARIABLES FOR LOWER AND UPPER WHISKERS OF BOX PLOTS...covveeereriereenees 146
TABLE 8.33: NEURAL NETWORK PREDICTION VARIABLES AND PARAMETERS, 1 < ASPECT RATIO < Z..enrirernerrersissesesessnens 146
TABLE 8.34: NEURAL NETWORK PARAMETERS, 1 < ASPECT RATIO S 2 ..ivuereeereressessessessessessessessesssssessessssssssessssssssesssssessesssssessees 147
TABLE 8.35: TRAINING AND VALIDATION DATA SCORING REPORT ..coueuiunersesiesesisssesssssssssessssssssssssssessssssssssssssssssssssssssssssssssssssnsens 147
TABLE 8.36: COMPUTATION OF INDEPENDENT VARIABLES FOR LOWER AND UPPER WHISKERS OF BOX PLOTS...covveeereriereenees 149
TABLE 8.37: NEURAL NETWORK PREDICTION VARIABLES AND PARAMETERS ....cuvueueuesressessessessessessessessessesssssessssssssssssssessesssssessees 150
TABLE 8.38: TRAINING- AND VALIDATION-DATA SCORING REPORT ....ovueremenresresresressessessessessessessessesssssssssssesssssesssssessesssssesssssssesnees 150
TABLE 8.39: SUMMARY OF PREDICTED THRESHOLD VALUES (DAYS) TO CALCULATE TIME TO HEAL wcvvuveureereereeereeseesersreeeeens 150
TABLE 8.40: SUMMARY OF PREDICTED THRESHOLD VALUES (DAYS) TO CALCULATE TIME TO HEAL wcvvvreureereereereineesernsesennns 151
TABLE 9.1: STATISTICS OF MULTIPLE LINEAR-REGRESSION MODEL (FOUR DEGREES OF FREEDOM) ...vvuueureneeneseeneseessesseeens 154

TABLE 9.2: TRAINING- AND VALIDATION-DATA SCORING REPORT, MULTIPLE LINEAR REGRESSION (FOUR DEGREES OF

FREEDOM) 1uveuutuueuiesesseesessesssessesssesssessesssessesssessssssessssssessssssssssssssssssssssssesssessesssessssssesssessessssssesssesssesssssnesssssnssssssssssssssessssssesssesssessessnes 154
TABLE 9.3: COVARIATE MEANS. ...coutrueeueeruerssessseessesssessssesssesssessssesssesssessssesssesssessssesssesssessssesssessssesssesssessssesssesssessssssssesssessssssssessssssssssaees 155
TABLE 9.4: OMNIBUS TESTS OF MODEL COEFFICIENTS .ovusuuereeeessssereessssssssseessssssssseesssssssessssssssssesesssssssessssssssssessssssssssssssssssssssssssssssesssss 163
TABLE 9.5: SURVIVAL TABLE ..0tu1uurereessssseeessssssssessssssssessssssssssesssssssssessssssssssessssssssssesssssssssssssssssssssssssssssssssssssssssassssssssssessssssssssssssssssssnsesssss 164
TABLE 9.6: VARIABLES IN THE EQUATION AND CORRESPONDING STATISTICS cvvveeessssseeeesssssneeessssssmssesssssssssessssssssssssssssssssssssssssessses 166
TABLE 9.7: RATIO OF HAZARD RATES w.uuvveeeessuseeeesssseseesssssssessessssssssssssssssssesssssssssssssssssssssssssssssssssssssssessssssssssessssssssssesssssssssessssssssnsesssss 166
TABLE 9.8: RATIO OF HAZARD RATES w.uuvveteessureeessssseseesssssssessessssssssssssssssssssssssssssssssssssssssssssssssssssssssssessssssssssessssssssssesssssssssesssssssssnsesssss 167
TABLE 9.9: COVARIATE IMEANS. ...vvvcussuueereesssssesesssssssseseesssssssesssssssssssssssssssssssssssssssessessssssssssssssssssssssssssessssssssssesssesssssessssssssssssssssssssssssssss 168
TABLE .10 SURVIVAL TABLE ..uvuerveesssussesessssssessssssssssessesssssssessssssssssesssssssssessssssssssessssssssssssssssssssssssssssssessssssssssesssssssssssssssssssssssssssssssesssss 171
TABLE 9.11: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS, ASPECT RATIO LESS THAN 1 cvooeeummmreeeessnnneeees 174
TABLE 9.12: TRAINING- AND VALIDATION-DATA SCORING REPORT, ASPECT RATIO LESS THAN 1 .ouuurveeeemmmnreeessmemneesssssnneeeees 175

TABLE 9.13: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS, ASPECT RATIO OF LESS THAN 1 AND RBMC. 178
TABLE 9.14: TRAINING- AND VALIDATION-DATA SCORING REPORT, ASPECT RATIO LESS THAN 1 AND RBMC .....ccovverrverennee 179
TABLE 9.16: TRAINING- AND VALIDATION-DATA SCORING REPORT, ASPECT RATIO GREATER THAN 1 AND LESS THAN 2 .... 180
TABLE 9.17: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS, ASPECT RATIO GREATER THAN 1 AND LESS
THAN 2 AND RBMC......cvvrirrirnnnn. . bR R RS R R R R 181

XVI

www.manharaa.com




TABLE 9.18: TRAINING- AND VALIDATION-DATA SCORING REPORT, ASPECT RATIO GREATER THAN 1 AND LESS THAN 2 AND
RBMC ... s e . ..181
TABLE 9.19: NEURAL-NETWORK PREDICTION, INTERLAYER CONNECTION WEIGHTS

TABLE 9.20: NEURAL-NETWORK PREDICTION, OUTPUT-LAYER CONNECTION WEIGHTS....

TABLE 9.21: NEURAL NETWORK PREDICTION VARIABLES AND PARAMETERS, ASPECT RATIO GREATER THAN 2

TABLE 9.22: TRAINING- AND VALIDATION DATA-SCORING REPORT, ASPECT RATIO GREATER THAN 2.

TABLE 9.23: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS, ASPECT RATIO GREATER THAN 2, RBMC ..... 187

TABLE 9.24: TRAINING- AND VALIDATION-DATA SCORING REPORT, ASPECT RATIO GREATER THAN 2, RBMC.....coovvrvverennee 187
TABLE 9.25: SUMMARY OF TRAINING- AND VALIDATION-DATA SCORING REPORT-.... .- .192
TABLE 9.26: SUMMARY OF TRAINING- AND VALIDATION-DATA SCORING REPORT ... .- .193
TABLE 9.27: SAMPLE VALIDATION SCORE......... e ———————— .- ——— .194
TABLE 10.1: LOWER AND UPPER WHISKERS OF BOX PLOTS FOR RBMC DATA .- ——— . 197
TABLE 10.2: SAMPLE PATIENT DATA..... .- e —————— e . 198
TABLE 10.3: VARIABLE COMBINATIONS OF SURFACE PLOTS .- e e ———— 203
TABLE 10.4: MULTIPLE LINEAR-REGRESSION MODEL VARIABLES, RBMC DATA...... .- .- .216
TABLE 10.5: MULTIPLE LINEAR-REGRESSION MODEL PARAMETERS, RBMC DATA.. .- .- ..216
TABLE 10.6: MULTIPLE LINEAR-REGRESSION MODEL PARAMETERS, RBMC DATA.. .- .- ..216
TABLE 10.7: TRAINING AND VALIDATION DATA SCORING REPORT FOR RBMC DATA ........... re——— 217
TABLE 10.8: RATIO OF HAZARD RATES.. .- .- e —————— .218
TABLE 10.9: COVARIATE MEANS.. .- e —————— .- 218
TABLE 10.10: WOUND DATA THAT CORRESPONDS TO PLOT IN FIGURE 10.23 .- .- .- 227
TABLE 10.11: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS, RBMC DATA.....coriirererererneseerernesseeseneeseenees 228
TABLE 10.12: TRAINING- AND VALIDATION-DATA SCORING REPORT FOR RBMC DATA .... e ——————— 229

XVII

www.manharaa.com




CHAPTER ONE
INTRODUCTION

www.manharaa.co



CHAPTER ONE

Introduction

1.1 OVERVIEW

A wound can occur anywhere, at any time, either by accident or from constant pressure. A wound
is an injury to living tissue caused by an extrinsic agent and comes in various shapes and sizes [1-
3]. Wounds typically develop in physical locations that are difficult to see, difficult to reach, or lack
feeling and nerve endings due to disease. Unfortunately, those who are susceptible to certain
diseases, such as diabetes, are more prone to the development of wounds. However, regardless
of the tendency of a person to develop wounds, the common wound locations remain the same.
Wounds are more likely to develop in the appendages of the human body than anywhere else.
Areas of the body such as the hands, buttocks, and feet, which experience continuous and
repetitive pressure, are most susceptible to the development of wounds.

Wound healing represents a critical healthcare issue. Wounds are difficult and expensive to treat
and to heal. The length of time it takes for a wound to heal is dependent on multiple factors, such
as optimal moisture ratio, wound depth, and necrotic (dead) tissue. Naturally forming wounds tend
to occur when there is unrelieved pressure or friction over a distributed area for a period of time.
For this study, we will investigate the robustness and accuracy of predictive models to estimate the
time to heal for chronic, nonhealing wounds.

According to the Mayo Clinic, wounds tend to develop quickly and are often arduous to treat [4]. A
recent cross-sectional study that measured pressure wound pain in an acute care setting showed
that 33.3% of patients were unable to respond to the evaluation tools. This study used the Faces
Rating Scale [5]. After a wound has developed, the concern for clinicians and patients is the
probability of infection. The infection rate of traumatic wounds varies from about 1% to 31%. The
likelihood of infection is based on the wound characteristics, such as the nutrition of the patient,
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whether the patient is obese or smokes, and the genetic predispositions of the patient [6]. Previous
studies have involved bacterial counts and moisture levels to measure the infection of the wound
bed. Both of these types of measurements require invasive techniques to the patient and the
wound bed. Pressure wounds in particular are due to extended stays in one position. Millions of
people are in jeopardy for developing a disease such as diabetes, and as many as 25% of these

patients are at moderate to high risk for wounds during their lifetimes [7].

Small wounds and blisters can cause catastrophic issues, such as lower limb amputations.
Besides the physical consequences of an amputation, there are psychological consequences, as
well. Preventing wounds will, in all likelihood, reduce infection and amputation, but preventive
measures and devices need to be emplaced to give patients the proper tools [8]. At least 85% of
lower extremity amputations are preceded by a diabetic foot wound [7]. Research shows that the

incidence of amputations has not significantly decreased despite new technology [9, 10].

A Dutch study found that the cost associated with the care of wounds are the third highest after
those treated for cancer and cardiovascular diseases [11, 12]. In addition to the time and pain of
treating a pressure wound, the price of a single full-thickness wound is estimated to be as much as
$70,000. The U.S. alone has been estimated to spend $11 billion per year for wound expenditures
13, 14].

As the epidemic of wounds increases, wounds, blisters, sores, and cuts become inherent
problems [15]. Decubitus wounds are worldwide health concerns [16]. Consequently, there is a
growing need, both in the research and the commercial market for early detection systems and
preventive tools. Diabetes is the leading cause of nontraumatic lower extremity amputations [17,
18]. Approximately 60% of nontraumatic lower-limb amputations occur in diabetic patients. And
approximately 14% to 26% of patients with diabetes develop foot ulcers that will require
amputation of the foot [17]. Worldwide, there is a diabetic amputation every 30 seconds [19].
Regrettably, 50% of amputees will develop a wound or infection in the contralateral (other) limb
within 18 months, and 58% will have a contralateral amputation three to five years after the first

amputation [20].

Approximately 2% of the U.S general population suffer from chronic, nonhealing wounds [21].
Conservatively, the cost of treating these nonhealing wounds is estimated to exceed $50 billion per
year, approximately 10 times more than the annual budget of the World Health Organization [21-

24]. The prevalence of wound healing is similar to that of heart failure and cardiac diseases [25].

www.manaraa.com



However, unlike cardiac diseases, little is known regarding the comparative treatments of wounds
and their respective outcomes [21, 25]. Additional factors that contribute to the healing time of a
wound are patient characteristics, such as diet, exercise, average blood flow, and living
environment [26]. These unrelated but patient-controlled factors can greatly impact the healing
time of a wound. For patients who suffer from chronic wounds, there are a number of methods to
heal and alleviate wound conditions. However, there are no systems that assist in diagnostic

measures.

There are few methodologies to help affect the decision for clinicians regarding wound care, how
wounds are evaluated, and how wounds are treated. The epidemiology of wounds have varied
incident rates ranging from 0.4% to 38% in acute care, 2.2% to 23.9% in long-term care, and 9%
to 17% for in-home care [27]. In the U.S. alone, an estimated 2.5 million ulcers are treated each
year in acute care facilities [27]. Monitoring wound progression over time is the main purpose of
this research. A wound can be a tear, a scrape, or a cut — simply anything that damages the
protective layer of the skin [28]. Wounds can occur anywhere on the body and range anywhere
from a small paper cut to a large gash. Similarly, traumatic wounds are a greater challenge to heal
without infection due to their nature, size, depth, and moisture. Despite the range of severity and
commonalities of wounds, there are no predictive modeling systems to assist physicians in
quantifying and diagnosing wound progression. Given the magnitude of the problem of nonhealing
chronic wounds and the lack of a robust system to assess them, we investigate the clinical

evaluation and predictive modeling of chronic, nonhealing wounds.

1.2 MOTIVATION

There is great interest in understanding chronic wound care assessment. There is also great
interest in standardizing the process of wound care and wound analysis. The baby-boomer
generation is redefining many aspects of the healthcare industry. Baby boomers are people who
were born during the post-World War Il baby boom between 1946 and 1964 [29]. As baby
boomers enter the next phase of their lives, this population of people (approximately 79 million in
the U.S.) are, on average healthier and have longer life expectancies than were previous
generations [30]. This population remains more active and more independent than their
predecessors. Due to the size of this population, it has developed and attracted multiple disciplines
in studying gerontology from a psychological, biological, and engineering perspective. The boomer

population has redefined aspects of the society, the culture, and now healthcare.
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Approximately 6.5 million people suffer from chronic wounds in the U.S. [31] . This number is
expected to exponentially rise due to this aging boomer population [32]. Wound care assessment
has many limitations — specifically, budgets, equipment, and tools. These limitations make it
challenging to consistently treating wounds across multiple clinics. Wound care assessment and
healing depends heavily on the capability of clinicians and the systems at their disposal to handle
the development and treatment of chronic wounds. These tasks involve understanding and

adapting chronic wound assessments to handle the variability within each patient.

Using predictive modeling systems to predict for such a diverse group of patients is challenging. To
build a robust and adaptive predictive system, we suggest that certain control systems must
integrate common properties of wounds, such as surface area, volume, and temperature through
the systems’ emergent behavior. From a complex systems engineering perspective, the systems
approach for wound care and the development of a predictive modeling and analysis for time-
varying wound progression and healing represent a promising path using the common properties

of wounds.

1.3 OPEN RESEARCH ISSUES

A distinct difference exists between ideal wound assessment methods and the current common
practice. There is still a debate among researchers about the effectiveness of measurable wound
parameters, such as size, shape, and color, and what measures best reflect accurate wound
healing [33, 34]. However, there seems to be a common agreement that there is no established
best-practices assessment and treatment for wound healing. There are, nevertheless,
comparatively better practices than others [33, 35, 36]. Currently, most wound evaluation methods
use typical physical properties, such as size, shape, and color, that manifest themselves externally.
In this study, we examine the issues associated with assessing wound health. More specifically, we
look at the aspects of wound data collection, such as the difficulty of acquiring wound depth as

part of wound assessment.

To date, there have been extensive studies performed on best wound healing practices [22, 28,
33, 37-39], evaluation of wound analysis tools, and wound healing measuring properties. However,
most of these practices are limited to physical and visual properties of the wound rather than
internal properties. We assume that this limitation is due not to a lack of investigation but to a lack
of appropriate tools in clinical practice. In the study, we focus on methodologies that are relevant
to obtaining wound measurements, such as size, shape, color, and necrotic tissue. Unfortunately,

most of these methods are still subjective when it comes to forming conclusions about the data.
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The methodology that we present in this study is applicable and transferable as assessment

techniques improve to include both biological and physical wound characteristics.

Width, length, depth, surface area, and volume measurements are the most frequently obtained
physical wound characteristics [33]. St-Supery et al. [33] have published a study on 29 wound
healing evaluation methods in which the authors extensively reviewed one-dimensional and two-
dimensional wound analysis tools [33]. From their review, the authors found that the most common
limitation of these evaluation methods is the subjectivity and lack of sensitivity of the users and the
tools [33]. Area measurements are among the most frequently used methods for assessing
wounds in a clinical setting [33, 40]. For many of the current processes in clinical and research
settings, the primary limitations are the sensitivity of the shape, contact with the wound, and the
inability to have accurate manual or digital planimetry — measurement of plane surfaces — due to

the size of the tablet acquiring the wound boundary.

Surface area measurements are most common in wound condition observations due to ease of
measurements [41]. Individuals in research and clinical practice can use the principal imaging
methods: planimetry, digital imaging, or stereophotogrammetry. Digital images provide full-scale
imaging of the wounds but are limited to visibility and contour shape. Many instances exist of two-
dimensional digital images in which the wound of a patient is on a curved surface, resulting in a
distorted photo [33, 40, 42]. The digital image of a curved surface can lead to an overestimation or
an underestimation of wound size. Another issue in wound photography arises when a wound
exceeds the size of the image frame. The inability to photograph the full wound in a single frame
can also lead to problematic size estimations. Stereophotogrammetry photography uses two or
more images from slightly different perspectives to create a composite image using triangulation to
allow for linear, area, and volume estimations [33, 43]. Stereophotogrammetry is a hybrid between
one-dimensional and three-dimensional imaging. Two-dimensional images of wounds are
beneficial for gathering surface data, but much of the healing takes place underneath the visible

wound bed.

Many factors influence wound healing, specifically with regard to wound volume. Factors that
primarily influence wound volume and wound healing are wound debridement; patient positioning;
and edema, an abnormal accumulation of fluid. We have not found previous literature that
documents successful wound volume measurement methodologies that accurately account for
wound healing. Currently, only a few general methods can measure wound volume. The first

method is a generalized linear approximation that uses basic geometrical shapes and volume

www.manaraa.com



formulas to estimate the volume of the wound [21, 44]. The limitation of this method is that it bases
all measurements on an approximation, which has a tendency to produce an overestimation or
underestimation of wound volume. Similarly, the second most common method of measuring
wound volume is to use various types of saline-gel fillings to physically measure the wound volume
by injecting fluids into an open, sensitive area [45]. These injectable fluids have a high probability of
contamination and leaking, and they may cause an overestimation of the wound volume. The most

crucial aspect of these fillings is the unnecessary contact with the wound bed.

Currently available three-dimensional wound imaging systems use techniques such as light
reflection, laser optics, compilation of standard images, and stereophotogrammetry [24, 38, 46-
48]. Some of these techniques are noncontact methods. Many of these systems take into account
irregular wound shapes and are portable. There are, however, some limitations to these systems.
For example, the structured light-based method is limited to wounds that “are not very small and
not very large” [24, 38, 48]. Additionally, the accuracy of the measurement depends on the
accuracy of the quality of calibration. Furthermore, the operator defines the edge of the wound
rather than the system. The limitations were common with most other three-dimensional wound
imaging systems. The restriction of a stereophotogrammetric system is that the accuracy of
measurements depends on the training of the operator. Further, measurements using this system

are cumbersome, time-consuming, and costly.

1.4 PROBLEM DEFINITION AND OBJECTIVE

Treating and monitoring wounds vary with each patient and with each wound. Tracking wound
progression is even more difficult. With various levels of standards of care, tracking wound
progression is inconsistent across wound clinics. The purpose of this dissertation is threefold. First,
it contributes to the understanding of chronic, lower appendage wound assessment tools and
techniques. We look to contribute to the understanding of how various wound characteristics
impact the length of wound healing time. Second, it identifies certain wound traits that can be
characterized quantitatively and that provide indication of overall wound health. Third, it
investigates and formulates an accurate algorithm and system model to predict the amount of time

left to heal for lower appendage chronic wounds.

1.5 PROPOSED SOLUTION

In this dissertation, we explore and investigate chronic wound healing practices and their tools and

instruments for the purpose of developing models that contribute to the prediction of wound
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healing time. This dissertation contribution has three main components: 1) retrospective and
current patient two-dimensional and three-dimensional image analysis; 2) predictive models and
algorithms; and 3) recommendations for routine chronic wound management.

The objective of this research is to develop a methodology that can accurately predict the amount
of time remaining for a chronic, wound during the healing process. This research has five primary
objectives:

Objective 1. Identify deficiencies within current wound progress tracking methods. The main
deficiency is the lack of accurate clinical assessment tools.

Objective 2.  Identify input parameters
Working with physicians at various wound care clinics, we identified potential input
parameters for wound characterization. The common criteria for the input parameters are
that they are measured using noninvasive methods and technologies. The objective is to
determine the most efficient, effective combination of inputs to produce a reliable and

useful output.

These parameters include but are not limited to [49]:

* Moisture content: In a wound that is too wet or too dry, moisture facilitates bacterial
growth. It is possible to include this parameter quantitatively.

* Necrotic (dead) tissue: the measure of necrotic tissue in a wound bed

*  Wound depth/depth of tissue damage: There is always the possibility that a wound has
“dead space” that must be harnessed and “filled.”

e Size (length by width by depth)

e Periwound skin (skin around the wound): The condition of the periwound skin around
the wound directly affects wound healing.

* Wound margin or edges

*  Wound odor: It is unknown whether the wound odor is a quantifiable value but is
something to consider.

By correctly identifying the underlying etiology and respective parameters of the wound, we can
develop a better baseline for the development of the predictive algorithms.

Objective 3. Development of Predictive Algorithms
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These algorithms are based on robust predictive methods, such as regression

analysis, neural networks, and survival statistics.

Objective 4. Modeling a Wound
With accurate and reliable data, three-dimensional wound modeling is a possible
incorporation into the overall system. We will produce a three-dimensional model of the
shape and volume of a wound to provide an accurate representation of the current stage of

the wound.

Objective 5. Data Analysis
The data analysis includes a comprehensive understanding and development of the
predictive algorithms. We determine through the data analysis the robustness and

accuracy of each of the modeling techniques.

The overall goals of this dissertation is to design a methodology that standardizes assessment of
wound with three main focus points: 1) develop a methodology to predict model prototype to
estimate wound healing time; 2) support the predictive algorithm with a three-dimensional wound
model; and 3) recommend adaptations to the model prototype, including parameters, such as
patient characteristics and risk factors, that are known to be associated with wound healing. We
hope the model will provide the initial framework and support for continued research in developing
a more comprehensive predictive modeling system that can lead to a standard approach to the

routine management of chronic wounds.

1.6 DISSERTATION CONTRIBUTION

The primary contribution of this dissertation is the development of predictive models and
algorithms to estimate the time to heal of chronic, lower appendage wounds. This contribution
consists of three components: predictive algorithms, the system components, and the overall

methodology.

Predictive algorithms are the developments of a mathematical formulation that uses a combination
of specific wound characteristics to predict the number of weeks left to heal. The importance of
each wound characteristic is determined through statistical analysis. More specifically, the
significance of each wound characteristic input is determined through the correlation between

each wound characteristic input, as well as each input with the output. Various correlation metrics
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determine each wound characteristic inputs’ importance. Figure 1.1 shows a basic overview of the

respective input/output diagram.

There are three components of Figure 1.1: the inputs, the algorithm, and the output that have a
unique contribution to the overall predictive model. The inputs were chosen based on a series of
statistical analysis and statistical correlations that determine the ideal set of inputs for the predictive
algorithm. Based on the analysis, we determine the archetype set of inputs for each of the
predictive algorithms: regression and neural networks. Similarly, within the predictive algorithms,
we contribute two algorithm analyses to compare their accuracy and robustness. Last, the output
contribution will be twofold: 1) Primary output will be the predictive quantitative value of the time left
to heal for a wound; and 2) A three-dimensional model of the wound shape and depth. The three-
dimensional model of the wound will provide the ability to view and track the change in volume of

the wound.

width

height

depth

sinus tract

ini OUTPUT
bk > MATHEMATICAL PREDICTIVE
ALGORITHM Time to Heal

INPUTS

wound base

necrotic tissue

imaging data

other diseases

predicted cross section

FIGURE 1.1: INPUT — ANALYSIS - OUTPUT

The quantitative value of time to heal is the primary contribution of this dissertation. However, the
secondary contributions add complementary value to this overall research. The second
complementary contributions to this research are the development of three-dimensional models of
chronic wounds and overall methodology that includes image analysis and routine chronic wound
management analysis. Three-dimensional virtual modeling is used primarily in product design and
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development to prevent unnecessary prototype creations due to minor changes. Recently, three-
dimensional modeling has become more mainstream in medical devices. However, in many past
publications for chronic wound modeling, three-dimensional modeling does not provide a true

three-dimensional model, as we show in Chapter 2.

Three-dimensional modeling is heavily used in other areas of medical imaging, such as cancer and
tumor detection, but is rare in wound care and assessment. Three-dimensional modeling provides
the methodology with the ability to track the changes in the surface area of the wound and the
subtle changes in the volume of the wound below the surface. The changes in volumetric data will
contribute to the knowledge that understanding and tracking the volume will assist in

understanding how the wound is healing.

Part of understanding and appropriately using three-dimensional modeling for chronic wounds also
includes gaining the necessary information to input accurate data into a three-dimensional
modeling system. Our contribution also includes the imaging component of the overall system,
which integrates still and thermal imaging over a length of time. These images provide us with the
ability to photograph the wound with a ruler, trace the spline of the wound, and import that data
into the three-dimensional modeling program. In this research, we use Solidworks™ as the three-
dimensional modeling program, thus allowing us to accurately determine the perimeter of the
wound. By using computerized planimetry, we are able to more accurately define the wound
perimeter without human measurement and ultimately construct a virtual model the wound.
Similarly, thermography provides us with the respective temperature difference between the wound

and the surrounding skin to monitor how wound healing impacts the temperature of the wound.

The third contribution of this dissertation research is the development of recommendations of
routine chronic wound management for wound clinics. This is based on the observations at wound
clinics that range from community to large teaching facilities. We have spent significant time in
various wound clinics and wound treatment centers observing, recording, and analyzing the

individual treatment of patients and their wounds.

Routine medical practice has long had a varying definition of “standard.” As common with any
industry with multiple entities, each entity defines its standards and expectations according to what
it believes are the needs and wants of its customers — that is, the patients. This research on
developing a predictive wound care assessment methodology and system has extended a branch

of inquiry into the routine care of wound clinics. Through the research for the predictive model
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systems development, we noticed among between all the clinics that were visited. The scope of
this inquiry evaluates the observed wound care practice and routine wound care treatment. The
purpose of this inquiry is to determine whether a common practice can be developed to better
streamline chronic wound care, regardless of the type and size of the hospital. The purpose of this
contribution is to compare and contrast the clinic practices, tools, and resources at various
community and teaching hospitals. This exploration determines a proposed combination of tools
and technique that could be most beneficial to patient wound care. This contribution focuses on
three wound care clinics, a major teaching hospital, a midsized teaching hospital, and a community
hospital, and a wound care provider, each with its own methods of patient wound care. On that
basis, we provide recommendations of “Routine chronic wound management from an engineering

perspective, which is based on the observation and interactions with these hospitals.
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CHAPTER TWO

Literature Review

2.1 INTRODUCTION

The underlying pathophysiology, which drives the development of chronic wounds, is still poorly
understood [50]. The ability to measure wound progression is critical to the healing of wounds.
Wounds either progress in healing or deteriorate in health; the health of wounds rarely remains the
same. A wound bed that stagnates is generally the same as medical treatment that is not effective
in treatment. Proper tools for measuring the effect of an intervention are critical to properly healing
the wound. There has been recent progress in modeling and evaluating wounds [22]. Wounds are
most prevalent in elders. However, as the population becomes more active, people must take
more precautions to prevent wounds. The analysis of the geometric and chromatic parameters of a
wound is the most crucial and accurate way to evaluate a diabetic wound [22]. No currently
available technologies integrate all peculiarities and issues pertaining to a pressure wound [22].
Researchers and supporting clinicians have combined geometrical, thermal, and chromatic data

capture using three-dimensional optical scanners and computer-vision techniques.

Innovative research has defined a robust segmenting tool that enables discrimination of wounds to
accurately classify legions at different stages using textual information [22]. Two-dimensional
processes lack the detail of wounds larger than 1 to 2 microns, as well as the necessary
information of a wound [22]. The newest technologies have attempted to automatically detect a
wound edge by analyzing curvature maps [51]. Because the topology of each wound varies so
significantly, tracing methods must be tremendously adaptable. Current tracing methods are
inaccurate and unreliable for wounds that exceed a certain depth. Noninvasive, full-field
technologies are necessary to effectively measure and assess the severity of a wound. The grand
challenge is to integrate image acquisition and computer vision to monitor the wound with respect
to area, volume, color, and temperature without physical contact with the patient [22]. Currently,
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the development and analysis of this research is performed using off-the-shelf cameras and
equipment. The goal of our research is that the methodology we have developed will be the
foundation in pursuing a full-field, practicum-enabled wound assessment core technology that can

be integrated in current wound care clinics.

2.2 WOUND TOPOLOGY MODELING

In most wound clinics, wound progression is monitored by charts, diagrams, and measurements.
Some wound clinics have standard protocols to photograph the wound during each visit.
However, this practice is not standard across all wound clinics. Despite good wound tracking
procedures, wound monitoring, in general, concentrates on the surface measurements of the
wound. This study, however, also supports the ability to take those surface measurements and
measured depth to create a three-dimensional model of a wound. A three-dimensional model of
the wound allows more accurate calculation and monitoring of wound health using the volume of
the wound rather than just the surface area. Figure 2.1 is an example of the wound shape,

dimensions, and depth based on dimensions from a patient wound.

FIGURE 2.1: EXAMPLE OF WOUND MODELING IN SOLIDWORKS ™ SOFTWARE

2.3 PREVIOUS STUDIES: A REVIEW OF WOUND ASSESSMENT TECHNIQUES

Previous research is and has continually performed in the area of reducing the healing time of
chronic wounds in patients. Still, most previous research converges on using the surface of the
wounds rather than the underlying geometry of chronic wound development [52]. These
methodologies can be classified in terms of the measurement process, the measurement
techniques, and the completeness of the data [22, 52]. These systems include traditional imaging
techniques, including point-and-shoot digital cameras, and range to stereophotographic systems,
which use two cameras to create depth perception to calculate and create a three-dimensional

map of the wound surface [22, 52]. Despite these imaging advances, most previous research lacks
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the ability of a comprehensive chronic wound assessment system that enables real-time tracking
and prediction of wound progress. In most cases, the performance of previous wound

assessments are fragmented, focusing on one aspect of chronic wound assessment.

The University of Pisa in Pisa, Italy, conducted one study on chronic wound assessment that used
three-dimensional optical imaging based on integrating geometrical, chromatic, and thermal data
[22]. This study focused on the development of a noninvasive system to automatically measure
chronic wounds, with little human intervention or assistance. By analyzing both the visible and the
thermal imaging data, Barone et al. [22] hypothesized that their imaging system can determine the

size, shape, and depth of ulcers on human legs.

Barone et al. [22] determined that clinical treatments should be validated through constant and
consistent monitoring of the progression of wound size and wound healing. Previous research
supports the claims of Barone et al. [22] that ischemic wounds present a lower temperature than
core body temperature. This discrepancy could indicate healing or nonhealing. This discrepancy
would be similar to biological characteristics, such as a change in blood flow, an increase or a
decrease in oxygen, or a regrowth of skin [563-55]. The study of Barone et al. [22] focuses on a
noninvasive wound assessment method that monitors the healing process using three types of
surface data: geometrical, thermal, and chromatic data. Their research uses a three-dimensional
optical scanner and an infrared (IR) detector to capture the color and thermal images of the

wounds.

In short, Barone et al. [22] created an optical configuration that recorded three-dimensional images
based on image configuration. This optical configuration was composed of a color digital video
camera, a digital thermal video camera, and a standard video projector. The three cameras were
mounted at three slightly different perspectives to provide the “depth,” which is similar to a stereo
camera. To acquire accurate data, this study used light plane projects to obtain the shape
measurements. The light plane projects provided a sequence of images that represented parallel
vertical light planes. This study generated three-dimensional chromatic and thermal representations
of the wound by automatically mapping the visible and infrared images onto three-dimensional
geometries generated by the scanning process. This information allowed researchers to view the
three-dimensional coordinates of the points on the vertically projected lines. This research
produced success in the detection of wound regions and computing their relative areas and
volumes. The accuracy of this study was tested by measuring the shape of a reference object of

known dimensions. The precision was evaluated by comparing the point clouds of single scans
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that corresponded to best-fit surfaces. Figure 2.2 is an example of results observed by Barone et
al. [22]; they present results of a singular wound acquired from each imaging modality. This study
provided validation in the need for more comprehensive wound care systems. This study had a few
limitations: 1) the complexity of calibration and integration of the three cameras; 2) a three-
dimensional mesh surface contains very little depth along the Z-axis; and 3) the cost effectiveness

of the technique in clinical practice.

Despite the limitations of the study of Barone et al. [22], their research validated the need for better
chronic wound assessment systems. Furthermore, this study was among the first studies to use
three-dimensional imaging to create a three-dimensional map of the wound’s surface. What
differentiates the study by Barone et al. [22] from the previous studies is its ability to use geometric
and thermal imaging data in addition to chromatic data. Most of the previous methodologies and
acquisition systems support only chromatic data. Additionally, most previous systems are
considered strictly two-dimensional systems without any possibility of collecting and tracking the

volume of the chronic wound.

(a) (b} (el

(a) three-dimensional geometrical wound model, (b) three-dimensional colour texture map,

(c) three-dimensional thermal map

i

) (&)

(d) three-dimensional segmented data using wound detection on the chromatic image

(e) three-dimensional segmented data using wound detection on the thermal image

FIGURE 2.2: BARONE ET AL. WOUND IMAGES FROM DIFFERENT IMAGING MODALITIES [22]
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In 2008, the University of Pennsylvania School of Medicine published a review article on current
methodologies of wound care assessment. The article reviewed the techniques for measuring and
documenting wound geometries with an emphasis on multidimensional computerized wound
documentation [52]. The prominence of this article focused on more computerized wound

documenting systems rather than typical length and width measurements.

Computerized wound-documenting systems are rare, and the techniques have yet to be
standardized. Various methods exist to trace, calculate, and record the two-dimensional surface
measurements. Chapter 4 discusses the most common of these methods. The details extracted
from this article focus on the three-dimensional assessment because wound volume is the most

frequently reported desired metric.

Ultrasound sonography provides a visualization and quantitative assessment of deeper imaging
modalities below the epidermis, dermis, and hypodermis layers and allows clinicians to view into
the muscle, should a wound penetrate that far. Similar to the surface approximation of two-

dimensional wound measurements, wound volume measurements involve some limitations.

For many current wound volumetric measurement techniques, the initial three-dimensional shape
of the lesion is approximated based on known, typical geometric shapes, such as rectangles,
spheres, and domes [52]. For example, if a wound shape is approximated to be similar to a

rectangular parallelepiped, the volume is:
volume = length * width * height 2.1)

versus a spheroid

I
volume = E* length * width * height 2.2)

Many similar studies have reported methods to approximate the volume of a wound and the
approximation with traditional geometric shapes with three degrees of freedom [52]. For similar
studies, researchers have typically used some type of approximation for the footprint of the wound,
relying on already known objective measurements (Figure 2.3). Although this technique is sufficient,
the method is both inaccurate and unreliable in determining the change in surface area and depth.
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Geometries with different shapes and areas can have the same lengths and widths and will be judged to be of the same severity.

e

¢——Llength——> ——Length—— ——Length————

FIGURE 2.3: APPROXIMATE GEOMETRIC SHAPE ESTIMATIONS OF WOUNDS [52].

Similarly, other studies have showed that the combination of standard photography, transparency
tracing, and video camera recording produce acceptable results of diabetic wounds and venous
ulcers [44]. Combining these techniques still yields inaccurate results for estimating healing rates.
Mayrovitz et al. [44] used the ratio of the surface area of a wound (S) to its perimeter (P) to
characterize healing rates. The study [44] has provided an effective ratio to assess healing rates in
venous ulcers and a suitable indicator of linear healing rate per day. It has also been used to
predict time to wound closure based on nonlinear delayed exponential models that offer some
predictive capabilities but have not been verified.

The Mayrovitz et al. [44] model developed a study consisting of 20 nursing students using six test
images of various wounds. Using provided images, students were required to determine the actual
areas, the weight (W;) of each target, and the weight (W}) of the cutout square of each target
shape to compare it with a computer-generated and computer-drawn square of known area (4y).

The area (A;) was determined by

a =Y,
;= — %
Fw, F 2.3)

For this study, students were required to measure and calibrate the imaging device to the wound
and trace the wound three times in succession using a mouse. The purpose of multiple tracing
was to obtain a perimeter calibration factor to use for obtaining the area and perimeter.
Researchers used a standard error equation to determine the accuracy and reliability of their

results:

Error = Weight — Area Determined — Area Planimetry
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The area planimetry was determined through the average of the three tracings for each image.
Overall, this study supported the hypothesis that the characterization of wound shapes is possible,
but accuracy and reliability are questionable based on the techniques used. Mayrovitz et al. [44]
found that the standard consensus of estimating the correct weight-determined area among other
factors could contribute to the inconsistent measurements. Furthermore, the results were heavily
dependent on the student measurement process, image calibration, and the identification of
wound margins. The repeatability proved to be challenging. However, this study does support the
desire to use software algorithms to determine the perimeter of chronic wounds. The study also
suggests that further research and further training of wound care specialists can successfully use

computerized planimetry of digitized wound photographs to determine wound surface area.

2.4 NONINVASIVE WOUND MEASUREMENT TECHNIQUES

There are currently only a handful of noninvasive wound measurement techniques in both research
and clinical practice [22, 38, 56, 57]. These methods include a variety of techniques, but the most
prevalent are forms of imaging, laser, and light refraction. In Chapter 4, we will discuss the four
most common methods. including curvature-map-based method, three-dimensional construction,

digital construction, and a few currently available commercial systems.

St-Supery et al. [33] developed a review article that questioned whether an ideal methodology for
tracking chronic wounds exist. They discovered a series of methods organized into one-, two-, and
three-dimensional techniques. Table 2.1 [33] shows modified results from St. Supery et al. [33] to
show only the noninvasive techniques of wound assessment. Chapter 4 will discuss in more detalil

the primary and current methodologies used in current chronic wound care management4.

2.5 SUMMARY

We have explored various methods of measuring the surface area and volume of chronic wounds.
By fully understanding past research, we can determine the niche of chronic wound measurement
techniques. St-Supery et al. [33] is the most similar study we have found that uses both
thermography and three-dimensional modeling to reconstruct the behavior and topology of a
chronic wound. However, as Figure 2.2 shows, their techniques involved more inverted models of
the wound by creating a negative impression. The methodology uses the surface area shape with

the corresponding depth measurements to create a positive three-dimensional model.
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Additionally, the planimetry of digitized wound photographs and approximate geometric shapes
(Figure 2.3) allows clinicians to estimate wound shape in real time. We believe that, with the decline
of cost for digital cameras, digital photography, and the storage of medical record photography,
the consistency of photographing wounds should become more standard. Wound surface area
should grow beyond the approximate bounding box.

Table 2.1 is a compressive summary that we have determined from literature that summarizes two-
and three-dimensional chronic wound measurements. However, most of the methods have
significant limitation in determining irregularly shaped wounds. We believe the methodology, when
refined, could eliminate some human variation in measurements and discrepancy between

measurements. This elimination would allow for additional accurate tracking of wound surface size

using digital planimetry.
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TABLE 2.1: SUMMARY OF ONE-, TWO-, AND THREE-DIMENSIONAL MEASUREMENT ASSESSMENT TECHNIQUES [33]

Degree of Methodologies Descriptions Advantages Limitations
Freedom
One- Perimeter Measured directly on wound, Sensitive to wound Measure is taken on wound edges, which are often
dimensional on acetate tracings, or on contour variations hard to delimitate precisely
photography tracings
Highly observer dependent
Two- Linear measurements  Calculation using width (W) Simple and quick Approximation of wound size using regular
dimensional and length (L) measures No special material geometric shapes
needed Many widths and lengths possible on a single wound
Wound approximated by Convenient Not sensitive to all shape variations
regular geometric shapes Cheap
Rectangle: W x L
Ellipse: W x L /4
Two- Direct manual Wound contour traced on an No need for an Squares crossing boundaries are source of error
dimensional planimetry acetate approximation by
geometric shapes Square counting is time consuming
Squares within contour
counted manually No expensive material Exudate can blur wound edges
Inclusion of squares over- needed
crossing wound boundaries is Contact with wound needed
variable Simple
Two- Direct digital Wound contour retraced on No ambiguity with Problematic when wound is bigger than the tablet
dimensional planimetry digital tablet crossing squares
Contact with wound needed
Software calculates area No tabulation errors
possible Exudate can blur wound edges
Simple and quick Expensive
Two- Manual or digital Full-scale wound images No direct contact with Wound edges less clear on a photo
dimensional planimetry on photos  taken wound needed
Curved surface distorted on photo which leads to
Wound contour retraced on an ~ No blurring of wound underestimation of real area
acetate or on a digital tablet edges by exudate
Problematic when wound is bigger than the photo
Images calibration is time consuming and a source
of error
Three- Linear measures Width (W), length (L) and Simple and quick Approximation of wound size using regular
dimensional depth (D) measures geometric shapes
Volume approximation by Low cost Not sensitive to shape variation outside the
regular geometric shape measured axes
formula . .
Parallelepiped: Wx L x D No  special  material
Spheroid: (W x L x D)/6) needed Undefined wound edges and wound base
irregularities can affect the measure
Deep sinuses skew the results
Three- Barber Measuring Software calculates volume No tabulation errors  Errors due to manual measures are present
dimensional Tool : :
from linear measurements possible One formula for all wound shape
Data storage Deep sinuses skew the results
Shows % of volume variation ~ Simple and quick
and its graphic representation Calculates volume
variation as a percent of
baseline
Three- Kundin Three calibrated perpendicular  Simple Approximation of irregularly shaped wound volume
dimensional axes reproducing the or area with only one formula
Cartesian system
Low cost Not sensitive to shape variation occurring outside
Width, length, and depth the measured axes
measures in a formulas: .
WxLxD 0327 Disposable

Area measurement also
possible: W x L x 0.785

Overcomes the variation

due to ruler positioning

Portable
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CHAPTER THREE
CHRONIC WOUNDS
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CHAPTER THREE

Chronic Wounds

Two primary, outermost layers of the skin protect the human body. The outermost layer is the
epidermis (75 to 150 microns thick), and the innermost layer is the dermis. The two layers are
separated by the basement membrane [2]. When human skin is broken by anything form a small
cut to a traumatic wound, the normal regenerative healing process allows new skin to grow over
the damaged area. Unfortunately, those who suffer from chronic wounds lack the ability to properly
heal.

3.1 BIOLOGY OF A WOUND

Wounds occur in all shapes and sizes. Clinicians often need to try multiple treatment options to
determine the most effective one for a wound [24]. Wounds are typically defined as disruptions to
the integrity of the skin. Simple wounds are those that remove or damage the first layers of skin. A
complex wound is deeper, often causing injury to nerves, blood vessels, or muscles [24]. The
underlying pathology of a wound determines the approximate treatment route; however, the

primary goal of wound management is rapid wound closure [24].

Pressure wounds impact the deeper tissues of a patient and are due to unrelieved pressure, shear
forces, frictional forces, or a combination of these factors [58]. The susceptibility of a person for a
pressure wound depends on a number of internal and external factors [16]. It is, however, generally
agreed that the accumulation of bacteria and bacteria colonization contribute to the tissue
breakdown and delay of healing [58-60]. Bacteria, although it typically prolongs healing, can
provide information on how well a wound is healing [58]. For many clinicians, the diagnosis of
wound health and eventual wound treatment depends on the diet of the patient and the nutrients
the patient commonly consumes. There also could be a discrepancy in the thickening of skin and
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bone changes in the feet. Known wound factors include ischemia, or the restriction of blood
supply; perfusion; oximetry, or the oxygenation of hemoglobin; and hardening of the surrounding
skin.

According to biology literature, impaired blood supply and tissue malnutrition cause wounds [16].
The combination of prolonged pressure and tissue compression can lead to capillary bed
occlusion and local ischemia, contributing to the rate of cell death [16]. People can sustain,
decubitus, or “lying-down,” wounds in any part of the body in which pressure and compressive
forces continue for a prolonged period [16]. Areas of the body that are more easily susceptible to
decubitus wounds are the heels, sacrum, occiput, helices, elbows, and lower extremities [16]. The
morphology of wounds occurs when the subcutaneous tissue breaks down. Epidermal necrosis
occurs later during morphology because epidermal cells can withstand a lack of oxygen for a
longer period. The prolonged absence of oxygen often contributes to pressure wound morphology
[16]. Various classification systems exist for decubitus wounds, such as the National Pressure
Ulcer Advisory Panel (NPUAP), the most widely accepted system.

The NPUAP has four stages of classification for pressure wounds [61]: Stage 1, nonblanchable
erythema; Stage 2, partial thickness loss of dermis, Stage 3, full thickness skin loss; and Stage 4,
full thickness tissue loss with exposed bone, tendon, or muscle.
Wound management is a multidisciplinary concern, but nurses primarily care for and manage
wounds [62]. Wound management should not be treated in isolation but should be considered in
respect to the body of each patient [62]. In many cases, assessment of the wound area is the
responsibility of both the patient and the clinician, and regular intervals of wound assessment is
generally important during the healing process [62]. According to literature, wound care is dynamic,
and the assessment, treatment, and wound progression is vital. Once a wound has formed, key
aspects of wound management, such as cleaning, effective drainage, and absorption [16], are
necessary to ensure effective healing. A typical path of treatment of pressure wounds is common
across all wounds. They are dependent upon four primary modalities [16]:

* Pressure reduction and prevention of additional ulcers,

* Wound management,

* Surgical intervention, and

e Nutrition.

Few diseases exist for which so many treatments have been attempted as there have been for
wounds. Treatment attempts include various chemicals, poultices of vegetables, enzymes,
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vitamins, cod-liver oil, dried blood plasma, various precious and nonprecious metals, sugar, and
salt [16, 63]. Mechanical treatments include electric lamps, ultraviolet light, hyperbaric oxygen,

rubber rings, sawdust beds, and a variety of pressure beds and padding [16, 63].

3.2 WOUND HEALING

Wound healing is a complex biological process that differs with every patient. Many factors
contribute to the health and healing rate of a wound, and we thus focus only on the basics of
wound healing and major procedures in clinical practices [64-66]. Chronic wounds stem from an
inability of the body to heal a damaged area. As expected, each wound is unique, which causes
wound assessment to be nonstandard. Common procedures for each patient occur in wound
clinics, but the course of treatment is extremely customized. Major systemic parameters, such as
blood pressure, temperature, and pulse rate, affect wound healing [3]. According to literature [66],

wounds [in general] have been relegated either undeserving or too difficult to measure.”

The wound healing phenomenon comprises multiple processes. all of which must function in
perfect harmony to properly and fully work [67]. The biological aspects of wound healing occur in
most wound repair and include inflammation; epithelization, or the formation of new skin;
angiogenesis, or the formation of new blood vessels; granulation, or the formation of connective
tissue; and tissue formation [3, 67]. The difficulty in accurately measuring wound healing is the
unknown information that is occurring but unseen at the surface of the wound. For example, the
healing of pressure ulcers has previously been linked to angiogenesis and the deposition of
extracellular matrix; this situation ultimately leads to the wound’s filling up with new tissue and
contracting over time [3, 67]. In particular, pressure wound healing consists mostly of new tissue
formation and contraction of the skin. Epithelization is especially important in wound healing and
involves four stages: keratinocyte, proliferation, migration, and differentiation. These stages allow
for new epithelials to make their way across the surface of the wound. These stages make it
cumbersome to accurately measure wound depth. Further, techniques that work in exploratory
research do not necessarily work in practice. Unfortunately, new skin growth causes more
uncertainty in the accurate measurement of wound depth because the reliability of the

measurements have yet to be established.

A significant amount of progress in understanding wound healing and wound anatomy has
occurred in the past century [68]. Wound healing has traditionally been divided into four distinct
and sometimes overlapping phases: exudative, resorptive, proliferative, and regenerative [68].

Some discussion has occurred on whether wound healing is a three- or a four-phase process. But,
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given the consequences of unpredictable wound healing, most literature states that a four-phase
process is more accurate [68]. During the exudative phase, a visible clot forms. The resorpitive
phase occurs 24 to 48 hours after the wound has formed. Macrophages migrate toward the
wound, causing visible inflammation. The proliferative phase typically occurs between the third and
the seventh day of healing. During this phase, the body forms granulation tissue, new epidermal
cells begin to grow, and a visible delicate border around the wound begins to form [68]. During the
regenerative phase, which can last more than a year, maturation of collagen occurs, reinforcing the
resistance of the wound to future damage [68]. Regardless of the complexity of the wound, if the
skin integument becomes damaged, bleeding and coagulation is inevitable [68]. Figure 3.1 and
Figure 3.2 represent two of the four stages through of a wound healing in its third day and third to

seventh days, respectively.

Fibrin clot
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(Third day) (Kujath and Michelsen 2008) (Third to seventh days) (Kujath and Michelsen 2008)

FIGURE 3.1: EARLY PHASE OF WOUND HEALING FIGURE 3.2: EARLY PHASE OF WOUND HEALING

Although we cannot understand all the parameters and factors that contribute to the “normal”
wound healing process, we are certain that particular physiological parameters, such as oxygen
perfusion and tissue bacteria levels, influence the microenvironment of the wound bed.
Nonetheless, there is only so much time per patient, and a battery of tests cannot be conducted in
every patient visit. At best, clinicians take wound measurements; perform debridement of the
wound bed, depending on the severity of the wound; and judge the health of the wound bed to

assess the extent of healing compared with its condition during the patient’s previous visit.

3.3 WOUND CLASSIFICATIONS

There are two categories of wound classification: partial and full thickness and acute or chronic

wounds. Partial- and full-thickness wounds infer a partial or full loss of the epidermis and dermis.
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Full-thickness wounds frequently involve a loss of deeper tissue layers, including subcutaneous
tissue, muscle, and bone [2]. Figure 3.3 shows a schematic diagram of the anatomy of the skin,
showing the depths of penetration of human skin and tissue when a wound occurs. Surgery or
trauma typically causes acute and chronic wounds. Acute wounds are unexpected, sudden
wounds [2]. Chronic (acute) wounds fail to follow the expected wound healing process. In many
instances, other issues, such as vascular compromise and imbalances in the body, including those
that diabetes creates, perpetuate chronic wounds [2, 69, 70].

Stratum corneum
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Stratum granulosum
Stratum spinosum

i is .
oo Dermo-epidermal junction

Stratum basale

Epidermis lifted to reveal
papillae of the dermis

Rete pegs
Meissner’s

corpuscle
Dermis Papillae
Sensory
Sebaceous gland — nerve
ending
Arrector pili muscle XN Pacini's
corpuscle

Nerve to
hair follicle

Subecutaneous tissue

FIGURE 3.3: SCHEMATIC DIAGRAM OF ANATOMY OF SKIN [2, 71]

3.4 CHRONIC WOUNDS ON LOWER APPENDAGES

Chronic wounds on the lower appendages account for 70% of most wounds at typical wound
clinics [72]. They fail to heal in a timely manner. Prolonged inflammation, failure to epithelialize, and
defective reconstruction of the extracellular matrix typically cause chronic and nonhealing wounds
[73]. They are most often associated with abnormal wound odor, inability to properly drain, and
patient discomfort [73]. Furthermore, chronic wounds that occur on the lower appendages

historically are more slower to heal because of their location on the body. Lower appendages are
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the last to receive circulation, to receive oxygen, and to receive nutrients. The circulatory system
cycles from top to bottom, which inherently causes the lower appendages, including the, calves,
feet, and toes, to bear the constant forces and pressures of walking.

Patients develop chronic, nonhealing wounds for many reasons. For many patients, their body
lacks proper blood circulation; without adequate blood supply to an injured area, healing becomes
more difficult. Similarly, blood pressure, blood flow, pulse volume, capillary perfusion, and the
amount of oxygen near a wound are also wound healing indicators. These indicators are especially
important for lower appendage wounds because the lower legs, feet, and toes are the last to

receive circulation.

Particular characteristics are attributed to the development of chronic wounds. For example, they
generally have a prolonged inflammatory phase and deficiency of growth factor receptor sites [2].
Additionally, many chronic wounds do not have an initial bleeding event. This initial bleeding is
significant in the process of wound healing because it triggers fibrin production and the release of
growth factors. What is more, individuals who develop chronic wounds have a high level of
proteases. However, the greater biological impact on individuals with chronic wounds is the
deficiency of growth factor receptor sites and cellular senescence — a decrease in proliferative

potential and the loss of ability to respond to growth factors, typically in elderly patients [2].

3.5 WOUND TREATMENTS

The treatment of chronic wounds is important because proper treatment affects the length of time
to heal. Although understanding various wound treatments is important, we will detail only a few of
the most common treatments. The predictive model does not directly take into account the
treatments between each visit. Therefore, we do not provide substantial detail pertaining to various

treatments. However, it is important to document the most common chronic wound treatments.

One type of treatment is a three-layer high-compression system, which 3M developed. The use of
a Class 3, high-compression system is common in lower extremity chronic wounds specific to
patients with venous and arterial diseases [74]. Compression of the wound works in much the
same way as stitches work. When a wound is compressed, the epidermis and dermis layers of the
skin that comprise the wound perimeter squeeze together in an attempt to stimulate skin growth.
For many patients with venous disease and venous hypertension, some degree of compression

should continuously be used [74].
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For diabetic wounds, treatments involve more maintenance of the wound from infection. The
second type of treatment involves the use of topical antimicrobials that can be effective in healing
chronic wounds. However, diabetic wounds are more prone to infection. As a result, the most
common treatment for these wounds is the use of antibiotics. Neuropathy, or nerve damage, is
among the most common problems that individuals with diabetes experience. Neuropathy causes
a lack of feeling in the damaged nerve endings, which are typically in the lower appendages. This

lack of feeling results in the development of wounds.

The balance of moisture and good bacteria to heal a chronic wound is the third type of treatment.
This balance is a key component in the success or failure of the wound healing process. Various
types of dressings for chronic wounds can have a great impact on wound healing. Various types of
dressings maintain certain levels of moisture in the wound healing environment. Similarly, different
types of wound dressing manage and protect periwound skin [74]. Clinicians look for wound
dressings that maintain their position on the body, minimize shear and friction, and do not

contribute to additional tissue damage [74].

3.6 ISSUES IN WOUND CARE CLINICAL PRACTICE

Many influences affect the efficiency of the heavily regulated healthcare industry. Limited federal
and state regulations exist to control the quality of wound care clinics, which must comply not only
with federal and state regulations, but also with insurance companies and payment regulations to
receive reimbursement for their services. Figure 3.4 provides an overview of the “Wound Care
Diagnostic Triangle Dilemma,” in which all wound clinics try to balance fast wound healing, the

quality of wound care, and reimbursement.

In the medical industry, a number of components are involved in the quality of patient care. These
components include not only well-educated and trained physicians but also procedures, tests,
reimbursements, financial management. The diagnostics of a wound are challenging because each
procedure on a wound needs to be reimbursed somewhere down the treatment pipeline. If a nurse
underestimates the size of a wound or the length of treatment, the institution loses money.
However, if a nurse overestimates the size of a wound, insurance companies can question
documentation, records, and procedures. These situations occur because centers receive part of
their reimbursements based on their measurements and outcomes. In essence, wound state
determination is a triangle of conflicting obligations, with medical insurance companies on one side,
quality of wound care on another side, and determination of would depth and shape on the third.

Figure 3.4 shows an explanation behind the three thematic sides of the triangle.
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The quality of patient wound care should be the first and foremost concern of wound care facilities.
However, with any situation, we question the right balance of care, cost, and reimbursement. One
of the major issues between wound assessment and medical insurance is the process of wound
measurement. The double-edged sword is that wound measurements are prone to human
inconsistencies but insurance companies reimburse on the accuracy and size of the surface area.
Unless an improved imaging device with a built-in measurement system becomes standard in
wound clinics, measurement variability is unavoidable.
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Even with improved technology, we discovered that not every wound clinic uses photographic
evidence to document the progress of wound healing. Photography of wounds is a basic, simple,
and logical assessment technique that should be common across all wound clinics. Unfortunately,
we have observed that photographing wounds is not routine.

The previously mentioned issue has been discussed with various practicing clinicians. Those who
do photograph patient wounds to follow their progress, reason that Medicare and Medicaid require
photographic evidence for reimbursement. Those facilities that do not photograph on a regular
basis have various reasons for not doing so. Some facilities state that photographic evidence is
unnecessary to judge the health of the wound. Other facilities submitting the photographs with the
insurance claim puts them in the hands of inexperienced, nonexpert wound care specialists —
insurance agents. Further, nonspecific-wound care clinicians may judge photographs by deeming
wounds as not healed when in fact they are looking at photos of healthy wound beds. Similarly,
wound care treatment is a delicate process, and the body sometimes requires stimulation to
facilitate wound healing. In many instances, the necessary treatment of a wound is to increase its

size to promote healing because of the patient’s healing trajectory.

With the implementation and initiative of electronic medical record systems across all wound
clinics, a discrepancy exists between a general EMR system and a wound care-specific (electronic
medical records) EMR system. Figure 3.5 displays the overall general patient wound care
procedure. In Figure 3.5, the last three steps illustrate what occurs during a small window of time
between patients when the nurses input their notes into the EMR system. If nurses do not input
their notes during this small time window, a backlog of paperwork occurs. The nurses have
approximately five minutes to input their assessments before retrieving the next patient. For those
clinics that see approximately 30 to 40 patients a day, time is critical for maintaining on-time patient
satisfaction. There were many instances in which we observed the nurses waiting 30 to 60
seconds for the system to load the appropriate patient page. Although this amount of time is
insignificant in many situations, for operational efficiency of a wound clinic, such a system wastes
time and tests patient satisfaction.
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NURSE PREPARES WOUND
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|
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UPDATE IN ELECTRONIC FORWARDS PATIENT CHART TO “DOCTORS NOTES” AND
MEDICAL RECORD DATABASE |~ PHYSICIAN . DICTATES ON PATIENT
(a.k.a. NURSES' NOTES)

FIGURE 3.5: SUMMARY OF RBMC PATIENT PROCEDURE

Similarly, additional unpredicted and unforeseen factors may appear, including training and
retraining the staff to use the selected EMR system. Many physicians and nurses work at a
collection of hospitals and facilities. Each facility has a different EMR system that physicians —

some of whom travel to three or four facilities per week — and nurses must learn.

A major and noticeable observation during the clinic visits was the use of an incorrect EMR system
for many wound clinics. In view of the Obama Administration’s EMR initiative, many facilities are
“scrambling” to implement and meet the federal government timelines. We observed that most
facilities needed wound care-specific EMR systems that allow the inclusion of photographs in
medical records. Many wound care-specific centers are using general EMR systems that are not
appropriate for chronic wound care. EMR systems for wounds promote patient safety and reduce

costs through routine chronic wound management [75].
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CHAPTER FOUR

Wound Assessment Methods

A number of noncontact, three-dimensional wound surface modeling techniques have been
developed. However, none have been widely accepted by practitioners due to their low accuracy,
high cost, and complicated calibration procedures [51]. Researchers have also posed other
techniques, such as a tracing paper system in which a plastic film is placed over the wound and

physically traces it with a stylus — an obtrusive procedure with a potential for infection.

Previous studies focus on the three-dimensional modeling of a wound based on geometrical data,
chromatic data, thermal data, or all of these types of information [22]. Similarly, some studies imply
that tools provide a better quantitative understanding of the state of a wound. However, no
nonhospital systems promote the direction of telemedicine and at-home medical aids or that link
high-quality three-dimensional modeling and quantitative diagnostic tools to aid monitoring of
wound progress. An ideal technique is to employ a method that does not require contact but is
able to measure blood flow and other internal characteristics of a wound. The most common
methods for quantifying wound progression rely on antiquated techniques of physically measuring
the length and width of a given area. Moreover, the reliability and accuracy of physical
measurements are problematic because these techniques can be cumbersome and prone to

human error.

4.1 CURVATURE-MAPS-BASED METHOD

Wound surface modeling has become a popular method in determining wound contours. A
previous study focused on wound measurement using curvature maps and a laser scanning
system. The curvature maps provide some vital data on the topology of the wound; it is simply a

noncontact measurement system to acquire a physical model of the injured area [51]. FastSCAN is
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a common three-dimensional laser-scanning tool used to acquire the topology of a wound to

create curvature maps but does not collect any medical data.

Other studies have focused on the use of a nonuniform, rational B-spline (NURBS) surface
technique to measure the ulcerated region and respective wound boundary. Computer graphics
and imaging analysis use NURBS to create, generate, and represent nonuniform curves [76].
Overall, this method uses numerous modalities that assist in the management of chronic wounds.
However, the method lacks reliability and standardized wound measurement techniques to better

assess the healing process of a wound [51].

4.2 THREE-DIMENSIONAL CONSTRUCTION-BASED METHOD

Only a few methods can acquire a three-dimensional model reconstruction of wounds. The most
common methods are extremely invasive and potentially painful to the patient. Alternative wound
measurement techniques include molds and saline infusions, similar to dental molds [22]. Jeltrate
measures wound volume as an alternative method to planimetry. Jeltrate is inserted and injected
into wounds to reproduce their three-dimensional shape [22, 77]. Its volume is then calculated by
weighing the mold. Although dated, Jeltrate is still in use. This method is more susceptible to
cross-contamination and time-consuming; it is also uncomfortable for the patient [22, 77]. A similar
method to Jeltrate is injecting a saline infusion into the wound using an amount of liquid dispensed
from the syringe that is equal to the volume of the wound. This process is less accurate than a
mold due to the possibility of absorption by wound tissue into the body [22]. Moreover, this

method is also uncomfortable for the patient.

The Advanced Topometric Sensor |l (ATOS |l) optical measuring technique uses
stereophotographic systems to calculate a three-dimensional map of the wound surface. ATOS I
uses dual charge-coupled-device (CCD) cameras and a central projection. This technique uses
various fringe patterns on the object of measurement and images are captured by software. These
fringe patterns allow for a three-dimensional coordinated map of the wounds surface. However,
ATOS II was originally developed for forensic medical use and provides no quantitative surface

measurements, such as height, width, and depth.

4.3 DIGITAL CONSTRUCTION-BASED METHOD

There is also research on three-dimensional model reconstruction using a traditional digital camera.

This technique uses noncalibrated photography using the Iterative Closest Point (ICP) algorithm
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[78]. The ICP algorithm is the dominant method of aligning two- and three-dimensional models
based purely on geometry and, periodically, color [79]. The ICP algorithm is used to minimize the
distance between two points in space. It performs this process by looking at local neighbors to
estimate the transformation parameters using mean-square cost function. ICP is an iterative
process for acquiring an accurate estimation of the points [79]. Unfortunately, the ICP algorithm is
prone to accumulative errors that can lead to mapping failures. However, its primary purpose of

aligning two matrices, two meshes, or two photographs is the relevant aspect to this study.

The use of three-dimensional modeling for wound surfaces and wound depth is not new. A 2007
study focused on a three-dimensional measuring device using a photometric camera and modified
laser retrofitted to a digital camera [76]. Researchers in Austria developed this technique, which
integrates digital photography and a three-dimensional laser-based analysis. The digital camera
acquires the focal length, exposure time, and shutter time, and the laser acquires depth of the
wound. The rapid photography technique requires limited calibration. This method has limitations
with precise measurements of flat wounds and irregularities in wound boundaries. Although the

precision is inconsistent, it is one of the more compact methods developed to model a wound.

4.4 COMMERCIAL SYSTEMS

Commercial systems for wound modeling exist, but no system is singularly above the rest. Many of
the commercial systems are contact-invasive, awkwardly intrusive, or two-dimensional in data
acquisition. These techniques are prone to cross-contamination and secondary wound infection
[562]. The computations of wound areas are made by approximating the contour legions. Systems
that estimate wound contouring base their approximation on conventional shapes, such as
rectangles; ellipses; and length and width — also known as ruler-based methods [22]. More
common approaches exist in acquiring two-dimensional measurements from different angles and
extracting a three-dimensional model. Several digital planimetry systems are commercially

available, each unique in its own right; however, none are ideal.

The commercially available Visitrak wound measurement system was developed to “standardize
the approach of wound measurement” [80]. There is no standardization regarding the system itself.
Visitrak is a portable tablet that measures the wound dimensions and wound area in an extremely
invasive manner [80]. It requires the patient to place tracing paper on the wound and trace the
wound boundary. This method exposes the patient to unnecessary risk for infection and cross-
contamination. Figure 4.1 displays the Visitrak Tracing Methodology. Visitrak also does not

produce a three-dimensional model.
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FIGURE 4.1: VISITRAK TRACING METHODOLOGY [80]

A similar system, from Vision Engineering Research Group (VERG), uses a 3x3-cm reference that is
placed on the same plane as the wound for calibration. The VERG system is also based on a
manual tracing technique following the wound periphery. Unlike Visitrak, in which the tracing is
performed against the wound, the VERG system traces based on a photographic image projected

on the computer. This software allows the clinician to trace on the computer rather than on the
patient (Figure 4.2) [52].
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FIGURE 4.2: VERG WOUND MEASUREMENT SYSTEM [52]

Although there has been recent progression in wound diagnostics, three-dimensional wound
modeling is still in its infancy, and there has yet to be a system to incorporate all the components
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we are proposing. In Europe, there is more research being performed in this area, resulting in
systems such as Measurement of Area and Volume Instrument System (MAVIS) (Figure 4.3).
MAVIS uses a camera to create a three-dimensional contour of a wound using the area and
volume. Similar to the VERG system, this system lacks the ability to measure the true depth of the
wound [48, 53].

FIGURE 4.3: MAVIS-Il THREE-DIMENSIONAL WWOUND MEASUREMENT INSTRUMENT [48, 53]

Mephedos is another system that has been documented as similar to the method proposed in this
research. Mephedos uses four optical cameras mounted on a tripod. The ability to see and
perceive a scene at slightly different angles creates depth. Human beings can perceive depth
because they have two eyes. The loss of sight in one eye limits depth perception. Similar to human
eyes, Mephedos uses the four optical cameras to create a single triangular frame, allowing the
combination of images to create three-dimensional image [47]. This system is extremely sensitive
to accurate calibration and light reflectivity. Wounds provide a moisture bed for both good and bad
bacteria, resulting in reflective pus. This unpredictable situation causes the Mephedos system to

fail due to specular reflections and misinterpretation of wound parameters [47].

4.5 TELEMEDICINE WOUND MANAGEMENT

More recently, telemedicine, a new technique for medical imaging and health monitoring has been
developed. Telemedicine allows patients to receive diagnoses and health-related advice through
the Internet. This new wave of medical treatment allows physicians to diagnose and assess the
management of wound care using electronic communication rather than physical appointments.
Several clinical studies showed positive results with telemedicine assessment and patient
satisfaction [81]. Furthermore, another study supported the use of telemedicine for wound care

assessment to the extent of determining wound condition and possible treatment options [82].
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With the exponential growth of smartphones, consumers have more access to health self-
monitoring resources. With the growth of the smartphone market, consumers can now download
apps to their phones that allow self-health responsibility. Various companies now offer wound
management and wound tracking applications that enable patients to photographically monitor the

progress of their wounds.

The WoundSmart® documentation tool allows patients to document their wound healing progress
from their smartphones. This app was developed by wound care specialists for personal or
professional wound documentation. The application allows a user to track multiple patients or one
patient with various demographic information [83]. This app is specific to wound management and
wound tracking rather than wound analysis. Figure 4.4 provides screenshots that show the

limitations of WoundSmart®.
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FIGURE 4.4: WOUNDSMART® APP USER INTERFACE [83]

A more comprehensive wound management app was developed to analyze pressure wounds.
Wound Analyzer® allows patients to view the region of interest and to take images using
smartphone cameras [84]. The Wound Analyzer® application differs from WoundSmart® in that
Wound Analyzer® allows users to segment the images into red, yellow, or black segments and
thus more accurately estimate the health of the wound. The app itself is intended for wound care
providers rather than personal wound tracking management. Figure 4.4 provides screenshots that

show the limitations of Wound Analyzer.
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FIGURE 4.5: WOUND ANALYZER APP USER INTERFACE [84]

The previously mentioned wound management applications are the only two relevant electronic
health apps that allow clinicians and patients to track and monitor their own wounds. There are,
however, limitations to these apps. Both apps are recommended for use with wound clinician
expertise and do not promote the ability to diagnose wounds. Furthermore, the apps have not
been scientifically validated through clinical studies and do not currently abide by the same Food

and Drug Administration (FDA) laws.

4.6 EXISTING PREDICTIVE METHODS

Predictive models have existed for years in areas such as the stock market or real estate market.
Yet, predictive models have recently become more prevalent in medicine. For example, numerous
genetic studies and tests can predict a patient’s susceptibility to cancer based on presence of
certain proteins or certain biomarkers within the body [34, 36]. Predictive models also exist for the
prediction of consumer behavior and why people buy what they buy [40, 85]. In other words,
prediction is a popular method of trying to anticipate and monitor actions and reactions. However,
in wound healing and treatment, scarce research exists for predictive quantification.

Based on the literature review, no wound predictive models truly predict. As mentioned, they focus
primarily on cancer and tumor detection rather than wounds [42]. Azimi [42] focused his research

methodology to monitor and predict daily tumor volume and surface changes of head and neck
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tumors. His method used regression analysis to effectively predict models for tumor geometry and
analysis of results. The Azimi model generated two kinds of prediction — one dependent on tumor
volume and the other based on tumor surface variations [42]. However, the significant difference in
his model is its dependency on the quantitative amount of chemotherapy a patient receives. The

method relies on the feedback of a visual analysis to determine whether a treatment is working.

4.7 SUMMARY

Although wound systems exist in research and commercial applications, none encompasses ideal
functionality for measuring or modeling a wound. Furthermore, none of these systems applies a
quantitative determination of the wound progression state. Although modeling of a wound is
significant in understanding wound pathology, a model simply does not help in quantifying its state
of healing in the shortest time, which is the ultimate goal. The existing research and commercial
methods have progressed chronic wound analysis but lack the ability to be used in real-time clinic
settings. We must better determine the appropriate and relevant patient and wound parameters to
establish which characteristics indicate proper wound healing.
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CHAPTER FIVE

Wound Parameters

Wound evaluation, treatment, and analysis vary depending on the institution, the hospital, or
medical facility. A chronic wound is one that is nonhealing or that does not follow the healing
stages within 12 weeks of acquisition [21, 64, 68]. This section will discuss four wound centers,
Tufts Vascular, Wound, and Hyperbaric Center (Tufts) in Boston; Morganti Wound Center
(Morganti) in Danbury, CT; Raritan Bay Medical Center (RBMC) in Perth Amboy, NJ; and Vohra
Wound Care Physicians (Vohra) in Mirimar, FL. These sites typically receive patients whose wounds
have not progressed in healing for a substantial amount of time. These wounds usually have
existed for approximately eight to 12 weeks, and the patients’ primary care physician cannot
achieve healing. Unlike the other three clinics, Vohra is a private company that provides wound
care nurses and physicians to patient rehab facilities and nursing homes.

The purpose of sharing the clinic experiences in this thesis is to show examples that currently
occur in medical practice and in the general practice of wound care. Understanding what currently
exists in practice helps us to better understand how to integrate the methodology in the least

disruptive manner.

5.1 TUFTS VASCULAR, WOUND, AND HYPERBARIC CENTER

Tufts Vascular, Wound, and Hyperbaric Center focuses on multidisciplinary treatment for chronic
wounds, including diabetic, venous, and pressure ulcers [86]. The focus and wound classification
is based on arterial, venous, and diabetic wounds. We observed clinical practice and treatment of
wounds to gain a perspective and understanding of chronic wound care treatments and daily

activities. Additionally, we developed a sense of what physicians and nurses record pertaining to

wounds.
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At Tufts, we were exposed to how a toe amputation debridement differs from a callous, large heel
wound. Furthermore, the clinic experience at Tufts allowed us to understand how nurses measure
the surface area of a wound and understand patient characteristics that are vital to chronic wound
healing. We began to understand how patients develop chronic wounds. For some, the chronic
wounds occur after a stubbed toe, and, for others, nonhealing results from the patient’s failure to
comply with doctor’s orders.

5.2 MORGANTI WOUND CENTER AT DANBURY HOSPITAL

Morganti Wound Center is in Danbury Hospital. Similar to our experience at Tufts, we observed
Morganti for patient care and wound care treatment. Additionally, we worked with the center’s
clinical manager and learned from his expertise pertaining to wound care-specific training,
resources, and hyperbaric medicine. Morganti is wound-care-specific; 50% of its patients’” wounds
are a result of surgical wounds; and 75% to 80% are wounds below the knee [72]. Morganti
primarily tracks surface measurements, such as width and length; however, like most other clinics

they use the wooden ends of wooden Q-tip swabs to measure depth.

Bryant et al. [2] has supported the idea that common and accessible wound assessment is
important to the management of nonhealing wounds. Their literature has documented procedures
for the ulcer assessment, physical assessment parameters, and assessment cofactors. Table 5.1
summarizes this information [2]. A common practice among wound care clinics follow the Bryant et
al. [2] procedural assessment in Table 5.1 and Table 5.2. Nurses and physicians track surface
measurements, including length, width, and depth of a wound. Using the assessment parameters
in Table 5.1 and Table 5.2, wound treatment begins with a patient first seeing a nurse, then the

clinical manager, then the physician, and then the nurse again to apply a dressing to the wound.
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TABLE 5.1: WOUND ASSESSMENT, PHYSICAL ASSESSMENT PARAMETERS PROCEDURES FOR PRACTITIONERS [2]

Anatomic location of wound

Extent of tissue loss

Characteristics of wound base

Type of tissue

Percentage of wound containing each type of tissue observed

Dimensions of wound in centimeters
Wound Assessment . . o

(length, width, depth, tunneling, undermining)
Parameters

Exudate (amount, type)

Odor

Wound edges

Periwound skin

Presence or absence of local signs of infection

Wound pain

Wound etiology and differential diagnosis

Duration of wound

Cofactors

Comorbid conditions (diabetes, cardiac)
Physical Assessment - Medications
Parameters - Host infection

Pressure ulcer risk factors

Decreased oxygenation and tissue perfusion

Alteration in nutrition and hydration

Psychosocial barriers

Past therapies

Table 5.2 summarizes the skin-assessment parameters that literature has acknowledged as the
most important in the indication of wound health.
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TABLE 5.2: SUMMARY OF WOUND-ASSESSMENT PROCEDURES FOR PRACTITIONERS [2]

Skin-Assessment Parameters

Color
Moisture
Temperature
Olfaction
Texture
Turgor
Lesions

Skin Injury
Nails

Hair

5.3 RARITAN BAY MEDICAL CENTER: THE CENTER FOR WOUND CARE

The Center for Wound Healing at RBMC is in a small, community hospital. Wound care procedures
at RBMC are similar to those at both the Tufts and Morganti clinics. RBMC schedules patients at
intervals of 30 to 45 minutes. The wound clinic rotates four patient rooms with four nurses and one
physician. Typically, the wound clinic sees 25 to 40 patients per day, depending on the analysis of
the patients’ previous week. RBMC observation provided us insight into their hospital’s operational
procedure and allowed us to use a thermal imaging camera to photograph patient wounds over a
short period. Furthermore, RBMC takes photographs of wounds throughout a patient’s duration at
the wound clinic as documentation of wound change over time. This documentation allows us to
compare changes over time, such as color, size, and temperature. Figure 3.5 summarizes the

patient/nurse/doctor procedure at RBMC.

Over three weeks, we visited the same 18 patients, documenting their wound temperature with a
thermal imaging camera. The thermal imaging camera provided us the temperature difference
between the surrounding environment and their wounds. Chapter 9 documents three of these

patients.

5.4 VOHRA WOUND CARE PHYSICIANS

Vohra Wound Care Physicians, a private company, acts as a liaison between wound care

physicians and facilities such as nursing homes. Vohra maintains a database of patients and their
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respective wounds. This company supplied us with an enormous amount of data to analyze. The
data analysis concentrated on 6,600 unique wounds that were treated by a physician a minimum
of five times, resulting in approximately 860 unique patient visits and their corresponding wound

measurements.

Vohra Wound Care Physicians provided us with data strictly detailing the attributes of the patient
wounds. Unfortunately, the company did not provide any patient demographic data due to strict
Health Insurance Portability and Accountability Act (HIPAA) privacy laws. The data provided by
Vohra included the following wound attributes:

TABLE 5.3: SUMMARY OF ASSESSMENT PROCEDURES FOR PRACTITIONERS

Wound Attribute Attribute Measurement Unit

Etiology Arterial, venous, diabetic
Location Body part code

Date of Service Date

Length 1 Centimeters

Length 2 Centimeters

Depth Centimeters
Undermining Percentage

Granulation Percentage

Yellow Necrotic Tissue Percentage
Black Necrotic Tissue  Percentage

Slough Percentage
Left Doppler Frequency
Right Doppler Frequency
Nutrition Grams/deciliter

5.5 WOUND CARE CLINIC SUMMARY

Based on observations, most wound clinics emphasize detail, thoroughness, and consistency.
According to the practices we observed, wound measurement accuracy and reliability is highly
clinician-dependent. Swelling, especially in wounds, creates physical tension within the body,
potentially causing inaccurate measurements. Similarly, all the practices we observed reinforced
the idea that a red wound can heal; if the wound bed is not red and granulation does not expose

red tissue, the wound is dead. Moreover, all practices had a general consensus that the wound
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bed can support granular tissue only if the wound bed is viable and active. For the wound to
properly heal, granulation must occur because it allows new, healthy skin to grow across and close
the wound.

5.6 INDEPENDENT PARAMETER CORRELATIONS AND RELATIONSHIPS

Through chronic wound care data analysis, we used a series of correlation plots (Figure 5.1 and
Figure 5.2) to determine the importance, relevance, and impact each variable had on the final
algorithm. Additionally, we used correlation plots and correlation matrices to determine variable
relationship and whether each variable was truly independent of one another.

The final algorithms do not provide every provided input variable. Figure 5.1 shows the relationship
between each input variable to each other. It also shows whether any redundancy exists within the
input variables by using color to represent the strength of their relationship to each other. The only
variables that have a strong enough correlation with each other are the right and left Doppler
values. This is expected because the Doppler readings represent the level of circulation in the right
and left legs, respectively. We would expect this strong relationship because if a patient has poor
circulation in one leg, the probability is greater that he or she would have poor circulation in the

other leg.

Figure 5.2 shows a better visual representation of the directionality of each of the input variables
and that they are visually correlated, not just that they are correlated. For example, we observe that

the right and left Doppler are positively correlated.
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5.7 PARAMETER CORRELATION

By understanding the behavior of the data, we were better able to determine the relevant input
variables of the algorithms. We determined these variables through a combination of correlation
plots and an understanding of recorded wound characteristics that seem to be consistent across
wound care facilities. Although some facilities may have a more comprehensive patient and wound
data collection than others, we focused on the characteristics that were consistent across facilities
or that we could determine through patient’s medical records. We have determined that four
wound attributes in Table 5.1 and Table 5.2 statistically impact the accuracy and precision of the
proposed methodology, as Chapter 9 shows. These four variables are length 1, length 2, depth,

and granulation.

5.8 SUMMARY

Through discussions with all facilities, we found that wound care practices lack adequate and
consistent tools. This lack hinders their ability to provide consistent and concise standards of care.
Furthermore, the tools that are currently being developed to supplement the quality of wound care
are for research purposes only, are too expensive for clinical practice, or are inadequate and
awkward for clinical use in real time. The variety of wounds these practices experience only propels
and reinforces the theory that there is a need for a more efficient system that assists in determining

an accurate wound healing methodology.
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CHAPTER SIX
PRELIMINARY STUDY
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CHAPTER SIX

Preliminary Study

To support the pursuit of a larger study, we have performed a smaller study with fewer patients
and a limited number of variables. The purpose of this preliminary study is to determine the efficacy
of the hypothesis. Based on the visits to these wound clinics, we identified three common issues:
1) lack of consistent measurement tracking; 2) lack of reliable data collection; and 3) lack of
monetary funds to purchase equipment. However, the primary observation noticed among all
practices is the lack of a standard procedure for care across the respective visited clinics. Although
we do not believe that a modeling system can predict healing time for all types of wounds, we
expect to see a common system that would encourage more consistent data collection of a
common set of wound parameters. This preliminary study focused on three common wound
parameters: width, length, and depth. In the larger study, we will add parameters such as

granulation as covariate inputs.

The preliminary study focused on the development of an algorithm to predict the number of weeks
before lower appendage wounds heal. We present, in this section, 37 original, chronic, nonhealing
wounds to examine how the width, length, and depth affect the amount of time to heal.

6.1 DATA COLLECTION

After much investigation, we have identified three primary characteristics in the data collection.
Table 6.1 articulates the ideal set of characteristics that we deemed necessary to establishing a
reliable predictive model for wound healing time. The extensiveness of details characterizing
wounds made data collection and information gathering challenging tasks. We had planned to
photograph patients’” wounds, and we also verified that data collection, recordings, and clinician
measurements on a given patient were reliable and consistent. We noticed that hospital practices
use a great variety of techniques in measuring patients’ wounds and that this variety has resulted in
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inconsistent measurements. Based on these observations, we deemed the retrospective

measurements too inaccurate to use in a predictive modeling system.

TABLE 6.1: DATA-COLLECTION COMPONENTS

* Age
e History of chronic wounds
e Overall health
Patient History * Arterial disease (yes or no)
* Venous stasis disease (yes or no)
e Diabetes (yes or no)

* Ankle brachial index (ratio)

e |nitial wound development
. . e Time without healing
History of Chronic Wounds
e Historical photos

¢ Previous dimensions

¢ Current dimensions
*  Depth

* Temperature profile

Current State of Wounds

* Substantial change (yes or no)

To understand what data to collect, we spent time in wound clinics observing their daily practices.
After observing multiple wound clinics, we decided to develop a predictive modeling system that
uses both still photography and thermography (Figure 6.1) to allow for more consistent wound
tracking and assessment over a long period. From the wound image (Figure 6.1a), we can acquire
the respective surface dimensions of the wound. The surface measurements are the typical
measured and recorded wound attributes [87] by the previous researchers. The wound thermal
image (Figure 6.1b) provides the heat map of the wound to confirm proper healing. Ultimately,
images provide qualitative and quantitative data about the wound to help us estimate the length of

healing time.
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(a) Still Photograph (b) Thermal Photograph

FIGURE 6.1: WOUND IMAGES OF A PATIENT’S HEEL WWOUND

Appendix A shows the data of multiple wounds from multiple patients. The weight variable
indicates whether a patient had multiple wounds and thus a predisposition for chronic wound
development. For the preliminary study, we used a healing rate of 0.15 cm?/week to estimate the
time to heal in weeks. This healing rate was confirmed through clinicians and previous studies that
examined whether healing rates were a reliable early predictor [88, 89]. Furthermore, this wound-
healing rate was an acceptable consensus among the collaborators at the various wound clinics.
Figure 6.2 provides a graphical representation of the data and their corresponding estimated
regression lines to provide the initial curvature of the data in Appendix A. The data in Appendix A
allows us to further develop a predictive algorithm for wound progression over time. Table 4
provides additional input factors for algorithm exploration. The data will be useful to statistically

determine whether the variables are relevant to the time to heal for a patient’s wound.
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TABLE 6.2: INPUT FACTORS FOR ALGORITHM

e Patient reference number
Administrative Data
¢ Date of observation

*  Ankle brachial index (ratio)
e Diabetes (yes or no)
Patient Attributes * Venous stasis disease (yes or no)
e Arterial disease (yes or no)
*  Wound location on body
e Width (centimeters)

*  Height (centimeters)

e Depth (centimeters)
*  Wound base (color)
e Undermining
Wound Characteristics
*  Wound shape
e Necrotic tissue
*  Photos (still photography)
*  Photos (thermal photography)

* Predicted cross-section

6.2 STATISTICAL IMPLICATIONS

To establish a reliable and accurate predictive model, we divided the data into two groups: training
and testing data points. We used the training data to develop the predictive algorithm (Appendix A)
and the testing data to confirm the accuracy of the algorithm.

We performed two analyses on the raw data. Using the original data, we developed a single
predictive algorithm that was dependent on width, height, and depth. The second analysis involved
the transformation of the raw data to the natural log. The purpose of this transformation was
twofold: 1) to determine whether the data could be linear; and 2) whether the natural log
transformation simplify the algorithm. The natural log transformation could approximate a linear-
regression predictive model and displayed the data as a traditional decay model. The equation of

the natural log predictive algorithm is given by:

In(Time to Heal) = —1.301 + 1.332In(Width) + 0.414 = In(Height) + 0.805 * In(Depth) 6.1)
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To determine the validity of the algorithm, the correlation and redundancy of the variables were
verified to ensure the reliability of the model. The correlations in Table 6.3 show the strength of the
positive and negative relationship among all the variables. This measurement includes the
relationships between each input variable to each other and then each input variable to the output
variable. For example, width has a strong positive correlation with height and the number of weeks
to heal. Similarly, height has a positive relationship with depth and weeks to heal, and depth has a
strong positive correlation with weeks to heal. The Pearson Correlation, or correlation coefficient,
measures the strength and direction of the linear relationship between two variables. The strongest
relationships are among width, height, and the number of weeks to wound closure. Height and
width also have a strong correlation, indicating that only one of the variables may need to be in the
final predictive model. Although the relationship between these two variables is statistically strong,
it is not strong enough to eliminate a variable from the final algorithm.

To create and establish a mathematically accurate algorithm, each variable of the algorithm needs
to be evaluated in comparison to the algorithm output. Table 6.4 provides the model summary
coefficients for each variable: width, height, and depth. The model summary presents the results of
the statistical analysis of the original data to determine the equation parameters. This model
summary helps us determine a model fit of the regression equation to the respective variable data
and their corresponding parameter estimates. Based on the model summary results and the
parameter estimates, the best-fit regression model is selected. Table 6.4 shows the parameters for
the best-fit model for width, height, and depth.
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TABLE 6.3: CORRELATIONS AMONG VARIABLES

Width (cm) Height (cm)  Depth (cm) Weight  Weeks to Heal
(Surface Healing

Rate)

Width (cm) Pearson Correlation
P-Value
N
Height (cm) Pearson correlation
P-Value
N
Depth (cm) Pearson Correlation
P-Value
N
Weight Pearson Correlation
P-Value
N
Weeks Pearson Correlation
to Heal P-Value
N

TABLE 6.4: SUMMARY OF PARAMETER ESTIMATES FOR MULTIPLE-REGRESSION MODEL

Parameter Estimates
Constant Width Height Depth
-41.937 5.9885 2.8063 5.7984

Standard Error
Constant Width Height Depth
7.95 1.68597 1.65112 3.372

The best-fit regression estimate is based on the R? value. R? indicates the percentage of the
variation in time that is explained by the model. The adjusted R? makes corrections for the addition
of extraneous predictors to the model. Lastly, we use the standard error of estimates to measure
the extent at which the data deviates from the best-fit line. We look for the standard error to be
small, allowing a good fit of the equation to the data without overfitting the data. The final best-fit

linear regression model is given by:
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Time to Heal (Weeks) = —41.934 + 5.9885(width) + 2.8063(height) + 5.7984(depth) 6.2)

Equation (6.1) allows us to understand the underlying correlation of the variables. It also assists in
the determination of whether there is a linear relationship of the input variables and the output
variable. Equation (6.2) provides us the actual best-fit linear regression model into which we could
input wound characteristics width, height, and depth, and the output will be the number of weeks
from wound conception to time to heal.

6.3 MODEL VALIDATION AND VERIFICATION

Appendix A shows 37 wound data points. We use 23 points as training data to develop the model
and 15 records to validate the model. The model presented here is a preliminary model to establish
the efficacy of the theory and hypothesis. Table 7 shows the model results. The “Actual Output”
represents the original data that was received from the patients. The “Theoretical Output” column
shows the values of the calculated theoretical time to heal (Weeks) using Equation (6.2). We
calculated the error and percent error using the standard error equations in Equation (6.3) and
Equation (6.4). For this linear-regression model, the validation data resulted in, on average, a
smaller percentage error than the test data (Table 6.5). There are many possible reasons for this
discrepancy that we will discuss later in this dissertation.

Actual Output — Theoretical Output
Error = (6.3)
ActualOutput

Error » 100 = % Error (6.4)

We believe that, with further refinement of the algorithm and the collection of additional data, the
algorithm will be a more comprehensive and robust algorithm. With larger amounts of data, we can
better predict a more accurate time to heal of chronic, nonhealing lower-leg wounds.

We recognize that some of the percentage error is high with some of the test records. We hope
that, with future studies and more patient information, we will be able to lower the percentage error
when testing algorithmic models. With respect to this data, the high percentage error could be
attributed to the additional health issues with the patient. For example, the patient could claim

compliancy and not be truly compliant. Nutrition also has a big impact on wound healing. As a
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result, another factor contributing to the high percent error could be the poor nutrition of the
patient. The high percentage error could be the result of a multitude of other, uncontrollable patient
issues that we did not have access to for this study.

TABLE 6.5: MODEL TEST DATA

Actual Output Theoretical Output Error Percentage Error
90.5 77.52 0.13 12.98
15.7 19.15 -0.03 -3.45
3.5 -6.85 0.10 10.35
6.9 1.94 0.05 4.96
18.8 22.43 -0.04 -3.63
27.6 58.75 -0.31 -31.15
5.2 8.79 -0.04 -3.59
36.7 49.19 -0.12 -12.49
8.4 22.99 -0.15 -14.59
0.3 -17.05 0.17 17.35
5.4 0.78 0.05 4.62
0.9 -16.75 0.18 17.65
2.3 0.73 0.02 1.57
20.9 46.20 0.25 -25.30

To show that the data is randomly distributed and is not predisposed to a certain number of
weeks, we have constructed a histogram of the distribution of the time to heal in weeks (Appendix
A). The histogram in Figure 6.3 appears to skew to the left, and we attribute this phenomenon to
the fact that most wounds in this data set have similar dimensions. We believe that, with a larger

data set, Figure 6.3 will shift from a left-skewed data set to a more normal distribution.
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FIGURE 6.3: DISTRIBUTION OF TIME TO HEAL IN WEEKS

6.4 SUMMARY

This study presents preliminary findings on the development of a predictive model for chronic
wound healing time. It appears that the length and width appear to have a strong relationship with
wound healing time and perhaps re-create redundancy in the algorithm. However, this finding can
be confirmed only with additional data collection and analysis. We believe that, with a greater
variety of patient data and wound characteristics, the algorithm will be become more reliable in its
predictive capabilities. The next phase of development for this study is to collect more data and
refine the algorithm to incorporate additional wound attributes. It should also focus on additional
wound characteristics and photographic evidence to determine whether temperature can be an
accurate predictor of wound health and wound viability.

6.5 LIMITATIONS

We recognize that this study has limitations regarding the number of possible inputs for a
predictive model for wound healing. Additionally, we recognize that the sample size is not
statistically large enough to develop a truly reliable and robust model. We designed this study to
ascertain and test the efficacy of the hypothesis in developing a wound healing predictive model.
The wound characteristics in Table 5.1 and Table 5.2 would be the ideal set of characteristics to
better predict wound healing. In this data sample, we do not have access to additional patient
health information. For the preliminary study, we did not know how other factors affect the result of

healing time. We hope that, with the larger study, we would have access to more patient
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information and health records to determine whether the other characteristics affect the predictive
model accuracy. One final limitation of not only this study but also all wound care assessment
studies is human variability in wound measurements. The effect of human measurement variability
impacts the predictive model at the microscopic level, but when patient data is recorded over a

period of months, the macroscopic observations provide a more definitive trend.

6.6 PRELIMINARY STUDY ANALYSIS

This preliminary study presents preliminary findings on the development of a predictive model for
chronic wound healing time. It appears that length and width have a strong relationship with
wound healing time and perhaps re-create redundancy in the algorithm. We confirmed this finding

with the larger data set and analysis in Chapter 8.
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CHAPTER 7/

Wound Healing Modeling Methodology

7.1 METHODOLOGY OVERVIEW

The core of the method is its ability to use a predictive model to quantify the percentage of a
wound healed over a period of time. This method will provide clinicians with a better understanding
of what treatments will be successful. Additionally, the wound diagnostic system will further the
progression of telemedicine and the ability to monitor wound progression from remote locations.
Figure 7.1 shows an overview of the proposed methodology and its respective components.

The uniqueness of this method is determined by the combination of qualitative and quantitative
information available to clinicians. The health of a wound is determined in the following order of
importance: the health of the tissue, the presence of granulation, the size, and the drainage of the
wound. These parameters are the primary components that determine the health of a wound.
Further, they are all parameters that are determined by observation — enormously subjective and
prone to human judgment. The method uses still photography and thermal photography to
accurately measure the size and depth of a wound. By providing the ability to more accurately
ascertain the topology of a wound, it will provide a better understanding of the wound’s
characteristics. Using the combination of still and thermal photography, the method provides us

with information on the viability of the wound — that is, whether the wound bed itself can support

wound healing.
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In further detail, the method will have three overall stages: 1) data acquisition and analysis; 2)
image acquisition, geometric construction and analysis; and 3) data mining, predictive models. The
first stage will allow us to collect the data and preprocess it to prepare it for data analysis. In
parallel, the methodology will perform image acquisition using both optical and infrared cameras.
An optical camera will acquire an image of the top of the wound, and the infrared camera will
capture an image of the depth and heat dispersion of the wound bed and surrounding area. The
image acquisition will allow us to construct a geometric three-dimensional model to enable us to
see over time the wound’s growth or shrinkage. The method uses more than a three-dimensional
model of a wound, like many of its predecessors use. It is a diagnostic method that will assist
clinicians in determining the healing state of a wound in a quantitative manner to eliminate some of
the subijectivity of wound assessment. Lastly, we will use this information to create a predictive
model in which the dependent variable will result in time to heal, which represents the number of

weeks left for the healing process provided that the patient is compliant.

The method is based on prognostics and prediction. This model evaluates and analyzes multiple
predictive methods techniques to ensure robust and accurate outcomes. By evaluating and
analyzing multiple predictive modeling techniques, we then compare the results, accuracy, and
precision of each model within itself and then with each other. There is a strong need for various
modeling methods, depending on the type of data we are analyzing. The remainder of this chapter
describes the two predictive models that best fit this set of data: regression analysis and neural

networks.

We designed this experiment to reflect the nature and variability of trying to predict the amount of
time left to heal for chronic wounds. We performed a series of correlation and relationship analyses
to determine the importance of the independent inputs to the mathematical models. We explored
multiple predictive-model techniques and determined that three methods were ideal for this set of
data: multiple linear regression, nonlinear regression, and neural networks. In the following
sections, we will describe the theory and intent behind each of the predictive modeling methods. In
Chapter 9, we apply each model to the data and compare and analyze their respective results to

determine the most accurate predictive model.

7.2 REGRESSION ANALYSIS

Regression models are the most widely known and applied analysis methods that can predict both
categorical and continuous values. This situation warrants regression analysis that predicts
continuous values rather than categorical values. Regression analysis is a methodology that
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models a relationship between one or more independent variables to one or more dependent
variables. In this case, the independent variables consist of wound characteristics, and the
dependent, or response, variables represent the time to heal.

For the purposes of this dissertation, we will provide a brief discussion on linear and nonlinear
regression. The linear-regression technique involves one or more predictor variables and a single
response variable [90]. Single linear regression is the simplest regression model. The model is a

linear function given by:
y=a+px + ¢ (7.1)

Multiple linear regression involves more than one predictor variable and one response variable.
Multiple linear regression is a linear function of response variable y of n predictor variables
X1,X2,X3 .. Xn. THis is expressed in Equation (7.2) where € represents the error of prediction [90,
91].

y=a+ B1x1 + Baxy + Boxy+...+Lux, + € (7.2)

Regression analysis requires that we make certain assumptions. Regression analysis assumes that
the predictions based on the equation are the best predictions possible, are unbiased, and have a
smaller average squared error than do any unbiased estimates. This methodology is further
dependent on the assumptions that [92]:

1) The error (g) follows a normal distribution.
) The linear relationship is correct.
3) The predictor variables are independent of each other.

) The variability in y values for a given set of predictors has homoscedasticity — that the
variability is the same regardless of the values of the predictors (homoscedasticity).
Regression analysis allows us to use and determine a predictive algorithm with as many numbers
of predictors as we choose. However, regression analysis may not need every predictor variable.
Through correlation matrices and various statistical parameters, we can reduce the number of

predictors to only those that are necessary. The most popular criterion, Rﬁd j.» Is given by:

2 n-1 2
Radj.=1—m(1—R)
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Rfldj_ is a statistic that is used to assist in the selection of ideal number of predictors that minimizes

error and maintains best fit [92].

Another popular statistic is Mallow’s Cp, :

SSR
Cp. =?+2(p+1)—n

Mallow’s C,, assumes that the predictive model is unbiased. Good models return C, values near

the total number of parameters (p) plus one.

7.3 NONLINEAR-REGRESSION ANALYSIS

Nonlinear regression models contain the same basic form as linear-regression models. Nonlinear
regression is used when linearity and a linear pattern do not fit the respective data. Nonlinear
regression modeling is another method used to predict outputs based on given predictor (input)
variables. Nonlinear regression is also known as curve fitting or the process to determine the best-

fit equation to the observed data [93].

Nonlinear regression allows us to specify the approximate function with parameters as a foundation
of understanding what model best fits the behavior of the data. In this case, we predict the steady

decline of each wound parameter in an exponential or a logarithmic behavior, as given by:

y=a+xP + ¢ (7.5)

7.3.1 SURVIVAL ANALYSIS

Survival analysis is a predictive modeling technique that is used to model time-to-event situations
[94]. Unlike linear regression, survival analysis has a dichotomous outcome and analyzes the
amount of time to an event [95]. The importance of this type of modeling refers to the ability to
predict the amount of time left for an event to occur. In this case, the time left to heal for chronic,
nonhealing wounds. Survival analysis provides us with the tools to understand and assess the

relationship between the covariates or predictor variables and the survival time.

Survival analysis hinges upon the comparison between the survival probability and the time to

event. This analysis is used with situations such as the recurrence of cancer after treatment. In this
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case, the analysis refers to the probability of a wound to heal in a specified amount of time. Survival
analysis produces two distinct plots: a survival plot and a hazard plot. The survival plot provides a
visual representation of the model-predicted time to heal for the average wound. The hazard plot
provides a visual representation of the cumulative model-predicted potential to heal for the average
wound [95, 96]. The hazard function is the derivative of the survivor function over time:

e = 20 7.6

Cox proportional hazards method of survival analysis is widely employed in time-to-event data
analysis [95]. The Cox regression model is the most commonly used multivariable survival method
for assessing the effect of multiple covariates on the time to event. The proportional hazards model

assumes that the time to event and the covariates are related through the following equation [97,

98|
hi(t) — [ho(t)] % eb0+b1xi1+...+bpbip (7.7)

where

hi(t) is the hazard rate for the i"" case at time t

ho(t) is the baseline hazard at time t

D is the number of covariates

b; is the value of the | regression coefficient

Xij is the value of the i case of the " covariate

Similar to the general survival analysis explanation, the Cox regression model works with the
hazard model to separate the baseline hazard function and the survival function. The Cox model
assists in distinguishing the contribution of each independent covariate on the outcome or survival
of time to event [99]. In other words, h;(t) represents the probability that the chronic wound will

survive until time t.
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7.4 NEURAL-NETWORK ANALYSIS

Neural network analysis models the adaptive behavior of the human brain. This data-mining
process mimics human thinking, adaptation, and modification. Neural networks consists of a set of
nodes that are characterized by input, output, and intermediate nodes [100, 101]. More
specifically, neural network consists of four distinct components: a neuron; a set of synapses, or
connecting links; an adder; and an activation function [100, 102].

A neuron is the overarching model for information processing that is critical to the operation of a
neural network (Figure 7.2) [100]. The neuron consists of three basic elements: a set of synapses,
or connecting links; an adder; and an activation function. Specifically, input x; connects to synapse
j. The set of synapses carry the respective information from one location to another. Each synapse
is characterized by a weight or a strength that is indicative of the impact that a single input will have
on the overall system. The weight or strength is represented by wy;. The k subscript represents
the specific neuron in question. The adder or the summing junction represents the combiner for the
weighted input signals. Finally, the activation function determines the new level of activation or
permissible amplitude range based on the input and current activation and converts them to some
finite output signal value [100]. In Figure 7.2, by, is the externally applied bias that can increase or
decrease the net input of the activation function depending on whether the output is positive or

negative.

In essence, neural network techniques are series of nonlinear nodes that communicate in parallel.
The synaptic weights allow the network to adapt without having an analytical solution [101].
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FIGURE 7.2: NEURON MODEL [100]

Figure 7.2 is represented in mathematical terms for neuron k through a pair of equations [100]:

m
Up = Z ijx]- (78)
=1

and

= b
Vi = @(ug + by) 7.9

There are two types of learning methods of neural-network analysis: supervised and unsupervised
learning. Supervised learning is like learning with a teacher (Figure 7.3). In this situation, the teacher
has the knowledge and is able to provide the neural-network environment using various training
vectors. The supervised-learning process constitutes a closed-loop feedback system with the
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unknown environment outside the loop. Supervised learning is the basis of error-correction

learning, in which the neural network is adjusted using an iterative step-by-step process, with the

aim of having the neural network emulate the teacher. Emulation is considered optimum when the

knowledge of the teacher is transferred to the neural network and the synaptic weights are fixed

[100, 101].

ENVIRONMENT

vector describing
state of the
environment

TEACHER

A 4

7

desired
response

— LEARNING SYSTEM

Y+

actual response @

/

error signal

FIGURE 7.3: LEARNING WITH A TEACHER [100]

There are two forms of learning without a teacher: reinforcement learning and unsupervised

learning. Reinforcement learning is learning performed through an input-output mapping through

continued interaction with the environment to minimize the scalar index of performance. Figure 7.4

provides a block diagram of one form of a reinforcement-learning system. The system in Figure 7.4

learns under delayed reinforcement or an observational temporal sequence of stimuli sent to the

environment. This learning ultimately leads to the generation of the heuristic reinforcement signal
[100, 101].
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FIGURE 7.4: LEARNING WITHOUT A TEACHER, REINFORCEMENT LEARNING [100]

Unsupervised, or self-organized, learning occurs when a neural network learns without a teacher
or critic to oversee the learning process. The unsupervised-learning method requires the network
to learn despite not receiving external feedback. This type of neural network can generally extract
useful relationships from the input by learning the respective concepts itself [100]. Figure 7.5
provides a block diagram that represents self-organized learning for which there is no external
teacher.

vector describing state
ENVIRONMENT of the environment

> LEARNING SYSTEM

FIGURE 7.5: UNSUPERVISED LEARNING [100]

For the analysis of the data, we used XLMiner, a Microsoft Excel add-on that features both
statistical- and machine-learning methods [103]. This software allows us to partition the data and
assist in the development of predictive algorithms and outcomes based on various methods of

prediction, one of which is neural networks.

76

www.manharaa.com



7.5 THREE-DIMENSIONAL CAD GEOMETRIC MODEL

Medical imaging has evolved dramatically in the past few decades due to the constant change of
digital imaging sensor chips. With multidetector computed geography (MDCT) and magnetic
resonance imaging (MRI), three-dimensional imaging has become less invasive and more easily
accessible [104]. These machines are large and expensive. For example, three-dimensional
imaging is heavily used for viewing, tracking, and monitoring tumor growth. With the cost of three-
dimensional imaging decreasing, a corresponding technique, three-dimensional modeling, is
becoming more achievable, specifically in medicine. Unlike three-dimensional imaging, three-
dimensional modeling involves the creation of a virtual model based on input dimensions. Three-
dimensional modeling provides a three-dimensional scan of the geometry of a wound that is then

imported into a three-dimensional modeling program, such as Solidworks™,

To acquire an accurate three-dimensional model of a wound, we needed to determine an accurate
method of correlating pixels and centimeters. Using the methodology in Chapter 8, we were able
to accurately determine the shape and size of the wound. We then proceeded to analyze the
image using the process in Figure 7.6 to obtain the final pixel XY coordinates of the edge of the
wound using color intensity values in Chapter 8. In essence, a digital image is simply a two-

dimensional matrix comprising various intensity, or numerical, values that create a visual image.
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Specifically, the CIELAB — for lightness, Color Channel A, and Color Channel B — color space
was the key to wound- and image-boundary analysis. The LAB color offers better digital
manipulation than does the traditional RGB (red/green/blue) color space. This is attributed to the
luminance of the LAB color space (Figure 7.7). This modification in color profile allowed the

algorithms to better detect a precise wound boundary.

White
L*

Yellow
+b*

Black

FIGURE 7.7: CIELAB COLOR SPACE [105, 106]

Different parts of the body have different temperatures. As a result, we have the ability to measure

the change in temperature using techniques such as thermal imaging.

7.6 THERMAL-IMAGING (THERMOGRAPHY) MODEL

Thermal imaging uses thermal photography to measure natural thermal radiation generated by an
object at a temperature above absolute zero [53]. The use of thermal imaging in wound analysis is
appealing because it is noninvasive and provides a method of investigating physiological changes.

It does not replace X-rays and three-dimensional scanning techniques but rather complements
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techniques such as computed-tomography and MRI scanning. Like all other photography
techniques, thermal cameras use specialized lenses to absorb infrared wavelengths. Germanium is
commonly used to focus thermal radiation onto a focal plane array of infrared detectors [107].

Thermal imaging allows clinicians to examine human organs that are too dense for other imaging
techniques to show. Only a few technologies are available on the research and commercial
markets. Flir Systems is the primary designer and manufacturer of high-quality, expensive thermal
imaging systems. High-quality cameras tend to cost more than equipment for other
methodologies. Interpretation of images and erratic temperatures can be difficult to understand.
Further, most cameras have an accuracy of only *2°C due to the noncontact methods.

Thermography also can detect only surface temperatures and does not offer penetration depth.

7.6.1 TECHNICAL SPECIFICATIONS

In thermal imaging, the feedback of the camera is highly dependent on body temperature. Each
person has a core body temperature that typically varies from 35.5°C to 37.7°C [53]. Thermal
imaging uses two core principles: radiometry, or the measurement of radiation, and photometry,
the measurement of visible radiation. In radiometry, the spectral radiant flux, F,,, is the spectral
radiant flux. The spectral flux is the power emitted, transferred, or received as radiation per
wavelength interval, resulting in the integral [53]. The output, in watts, is expressed by this integral
equation:

F, =f F,,dA (7.10)
0

Photometry measures the visible radiation of the system. Photometry’s relationship with radiometry
weighs the spectral power with the normalized, spectral luminous efficacy of the standard
observer, V(1) [63, 108]. Luminous efficacy is the measure of the ability of radiation to produce a

visual sensation [53] equating to:

780
F, = 683 f Fo,V(A)dA 7.11)
380

E, is the luminous flux in lumens (Im). According to [53], radiance is the radiant flux at a point on the
surface of the source or receptor. Both radiance and luminance are used substantially in both
human and computer vision. By analyzing the radiometry of imaging systems, it allows focused
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images to effectively measure radiation. In radiometry, the radiance of an object does not diminish
with distance, as it does in spectroscopy. The radiance of an object is not affected by the distance
between the object and its receptor in the absence of scattering and absorption [53]. More modern

infrared cameras use a focal plane array of detectors to capture the image [107].

Thermal radiation of skin originates from the epidermis and is independent of race; it depends only
on the surface temperature [53]. Emissivity varies with wavelength. Skin emissivity is rather
constant between 3 and 15 microns at a value of 0.975 + 0.05 [54]. Figure 7.8 displays the steps
in processing infrared thermal imaging for medical applications.

In the latest research, the more robust tools that quantify inflammation and infection of a wound
use thermal imaging to easily identify diabetic foot wounds [109]. Bharara et al. [109] have
performed numerous studies that support the theories of in-home monitoring using temperature
change and thermal technology. Bharara et al. [109] reported approximately fourfold to 10-fold
reductions in pressure wounds for patients using home-based thermometry devices. There has
been growing interest in simple digital thermometers, liquid-crystal-thermography technology, and
the Spectrasole Pro 1000 system for quick diabetic-foot assessment [110]. Previous research has
suggested that thermal imaging could facilitate the assessment of wounds and wound healing, but

the industry and science lack standard thermal-imaging techniques and analysis to validate this

methodology [109].
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The temperature difference between the wound and the surrounding environment depends on the
size, shape, curvature, and eccentricity of the wound. Understanding the interruption in the skin
matrix could lead to better understanding of how wounds form based on shear stress [109]. When
a wound forms, excessive vertical and shear stress force on the edges disturb the skin matrix
[109]. According to Bharara et al., [109] an objective parameter — that is, an index based on
thermal profile — is necessary to track wound healing over time using the Wound Inflammatory

Index. Bharara et al. [109] have proposed a new tool for quantifying wound conditions using

thermal imaging and wound size as inputs:

_AT*a
A

TI

(7.12)

This equation uses the temperature difference (AT), the area of the isotherm (a), and the area of
the wound bed (4) to calculate the thermal index of the wound (Tl). The calculations for Figure 7.9

are currently performed manually to evaluate wound assessment.

FIGURE 7.9: CALCULATION OF TI/VWWOUND INFLAMMATORY INDEX [14] AT BASELINE FOR THE TEST SUBJECT [109].

Thermometry is an innovative strategy to treat and manage wounds. This technique facilitates early
diagnosis, surgical planning, and preventive actions. Thermography also offers fast, noninvasive,
and safe examination of wounds. Table 7.1 shows the results from Bharara et al. [109] as a proof-
of-concept study for a wound healing trajectory. Bharara et al. [109] have created preliminary

scoring methods to assess wounds on the skin’s surface.
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TABLE 7.1: CALCULATION OF THERMAL INDEX/VWWOUND INFLAMMATORY INDEX RESULTS [109]

Day Average Foot Wound Area Isotherm Wound Wil Wound Area
Temperature (Pixels) - A Area (Pixels) Temperature (L x B, cm?)
(WY) (&Y
0 37.28 20907.00 8216.00 36.39 -0.63 5.44
7 36.56 13949.00 3158.00 35.17 -0.57 5.67
14 38.24 4615.00 2701.00 38.00 -0.26 4.8
21 37.87 1821.00 279.00 40.39 0.70 1.4
35 36.78 1715.00 174.00 36.96 0.03 0.84

Several studies have shown that foot temperature is an important parameter in assessing the state
of an wound [111]. The most commonly used current method of monitoring foot temperature is the
use of an infrared (IR) thermometer for self-inspection. This method is, however, manually intensive
and prone to human error. An IR thermometer also relies on human judgment rather than
automation. An IR thermometer also reads only one parameter, temperature, which can provide
only so much information. The benefit of this methodology is that it allows for consistent home
monitoring of a wound. By using thermography as a component of overall wound health,
thermography could provide important insight into further understanding and analysis of wound
health.

7.7 SUMMARY

Various predictive-modeling techniques exist. We explored types of models and ultimately settled
on multiple linear regression, nonlinear regression, and neural networks. Based on the data, we
believe these predictive modeling techniques provide the most consistent, robust, and accurate
results. This chapter provides the theoretical understanding for the predictive modeling processes

we use to analyze the data and produce the results in Chapter 9.
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CHAPTER 8

Wound Data Collection, Preprocessing

Chapter 8 focuses on data collection and both still and thermal photography to devise an accurate
predictor of wound health and wound viability. The proposed research methodology was
developed to contribute to the understanding of how various wound health characteristics impact
the length of time and quality of chronic wounds in patients. The subsequent data was collected
through two wound-care facilities: RMBC, a community hospital, and Vohra, a national wound-
care physician group. We compiled data in concert with all state and federal regulations involving
each location’s Institutional Review Board (IRB) and HIPAA compliance, as well as each location’s

nondisclosure agreements (NDAS).

8.1 DATA COLLECTION

RBMC provided both retrospective and living patient data for this study. Vohra provided most of

the retrospective data.

8.1.1 INSTITUTIONAL REVIEW BOARD

At each institution and each hospital, the process differs for authorizing and complying with the
state and federal privacy health laws. For RBMC, the process took approximately nine weeks. For
Vohra, the process took approximately two weeks. Figure 8.1 diagrams the process of approval for
both institutions.

To pursue research at RBMC, we had to present the research plan to the IRB, which comprised
nine individuals. The purpose of the presentation was to ensure the safety and privacy of patients
involved. Along with the presentation to IRB, we had to develop an informed consent for patients if

86

www.manharaa.com




they chose not to participate. This form was developed with the assistance and guidance of
Northeastern University’s IRB. Once RMBC’s IRB approved the plan, the clinic’s legal department
required an official educational-affiliation agreement to complete the approval process in Appendix
B. This approval process allowed us to collect live patient data at RBMC’s Care Center.
Retrospective data collection differs slightly from live data collection in that retrospective data
collection allows those with large patient databases to easily remove patient identities and
demographics.

We sent Vohra, the retrospective data source a one-page proposal with a description of the
research and a request for the desired data. Follow-up telephone calls further detailed the
necessary criteria for selecting patients. Along with the telephone calls, we had to enter into a
data-use agreement (Appendix B).

8.1.1.1 Living Human Data Collection

Figure 8.1 details the IRB process at the wound care facilities from which we received the patient
data. Vohra physicians supplied us with the training and testing data to develop the predictive
model. RBMC allowed us to collect on-site and retrospective data and to observe daily operations
in the wound clinic. RBMC also supplied us with photographs of patient wounds from still and
thermal imaging. Of the multiple wound care facilities we observed, RBMC was among the few that

consistently photographed patient wound progress.

With retrospective data, the data is a collection of numbers. Patients are not identified, and we
received no personal information. With on-site patient data collection, however, pain is a reality. For
four weeks, we observed the same group of 18 patients attend weekly visits to the wound care
center to monitor and determine their wound health, hoping for change in size as small as 0.10
cm. We observed and conversed with all patients who were willing to let us photograph their

nonhealing wounds. Most patients suffered from neuropathy and could not feel their wounds.
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FIGURE 8.1: IRB PROCESS FOR RBMC AND VOHRA

8.2 DATA-MINING METHOD SELECTION

We received data on 19,203 unique wounds, each wound having multiple records over time, from
Vohra, and we received data on 18 unique wounds from the RBMC. A variety of statistical analyses
were performed on the raw data to ensure a statistically accurate data cleaning of outliers and

extreme cases. Figure 8.2 shows an overview of how the data was initially prepared.
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FIGURE 8.2: DATA-PREPARATION METHODOLOGY

Figure 8.3 displays the computational process of determining whether the data and each variable
had a normal distribution. The purpose of this data mining was also to discover each variable’s
best-fit data distribution. Furthermore, histograms, box plots, and scatter plots were used to

determine the fit of each variable in preparation for data cleaning.

The purpose of normalization is to show the variability of each variable relative to the other

variables. The standard equation was used to normalize the data between zero and one, as given
by:

X; — Xpmi
Normalize Data {0,1} = ———— (8.1)

Xmax — Xmin
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CREATE HISTOGRAMS OF CREATE A NORMAL PLOT

NORMALIZE DATA FOR EACH > NORMALZEDDATAFOR | FOR EACH VARIABLE
INDEPENDENT VARIABLE EACH VARIABLE
CREATE A BOX PLOT FOR EACH DETERMINE BEST-FIT
VARIABLE TO DETERMINE DISTRIBUTION FOR EACH
OUILERSANDEXTREME | >
B VARIABLE

FIGURE 8.3: INDEPENDENT VARIABLE-DATA PREPARATION

8.3 DATA PREPROCESSING: STAGE |

As Figure 8.2 and Figure 8.3 show, the preprocessing of the data included normalizing and
cleaning the data set to prepare it for both regression and neural-network predictive modeling.
Specifically, Matlab® was used to write small blocks of code to assist in the cleaning of the
massive data set. Figure 8.4 shows a visualization of the process the data cleaning with Matlab®
code (Appendix E and F).

Box plots assisted in the elimination of outliers and extreme data points from the set of data. The
box plot describes the location of the center of the data is, the spread of the data, and the

departure from symmetry of the data. Furthermore, box plots identify data points — that is, outliers

or extreme outliers — that deviate from the bulk of the data [112].
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Equations (8.2) and (8.3) show how we derived the lower and upper values for each variable to

determine the ideal set of input parameters:

ini 8.2
Lower Whisker of Box Plot = max {Mlnlmu(rzn Dalga Value} 8.2
1 -
i 8.3
Upper Whisker of Box Plot = min {MaxlmuQm cha Value} 8.3
5 —

For each variable, we created box plots. We eliminated data based only on the box plot
information for length 1, length 2, and depth because each wound data sample has a guaranteed
value for each of these three variables (Figure 8.5, Figure 8.6, and Figure 8.10). Unlike length 1,
length 2, and depth, the independent variables of undermining, granulation, yellow necrotic tissue,
black necrotic tissue, and slough are percentages that represent what is occurring within the
wound. Not every wound has the previously mentioned characteristics, which results in a value of
zero. Due to this fact, we could not eliminate this data based on most values for each of these
variables, including undermining, granulation, yellow necrotic tissue, black necrotic tissue, and

slough.

Similarly, certain wounds result from physical imbalances within the patient. One of those
imbalances occurs because of the blood flow and circulation in the lower appendages. This
measurement is recorded via a Doppler tool and measures the flow in both the right and the left

lower appendage (Figure 8.7).
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FIGURE 8.6: BOX PLOTS OF LENGTH 2
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FIGURE 8.7: BOX PLOTS OF LEFT AND RIGHT DOPPLER

Figure 8.8 represents the box plots for both the albumin and prealbumin measurements of each
wound. Albumin is a visceral protein that functions as a carrier protein to assist in maintaining
oncotic pressure [113]. Clinicians use albumin and prealbumin as measures of the nutritional state
of the wound and the patient based on the patient’s need for protein. Although albumin and
prealoumin are good indicators of morbidity and mortality, some disagreement exists about
whether they can be used as measures of nutritional status [114].

Table 8.1 displays each variable and its box-plot properties. Table 8.1 and Table 8.2 show the
lower and upper limits of each variable, which provide the values for establishing the threshold for
each input parameters. This amalgamation of input parameters is the healed threshold for how we
have defined a wound that is healed. In addition, the range between the upper and the lower
quartiles is significant because these values define the upper limit to eliminate outliers and extreme
values. Although we have calculated both the upper and the lower limits of the data, we use only
the upper limits to eliminate the outliers and extreme values. The lower limits represent, within the
context of the data and situation, a closed wound. Therefore, we did not eliminate them for the

purpose of analysis because the wounds are considered closed.
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FIGURE 8.8: BOX PLOTS OF PREALBUMIN AND ALBUMIN

TABLE 8.1: SUMMARY OF BOX-PLOT STATISTICS OF INDEPENDENT VARIABLES

Independent Variable Q1 Qs Range Minimum  Maximu
m
Length 1 0.50 2.50 2.0 0 56
Length 2 0.50 3.0 2.5 0 b4
Depth 0.10 0.20 0.10 0 4
Undermining 0 0 0 0 7
Granulation 0 100 100 0 100
Yellow Necrotic 0 0 0 0 100
Black Necrotic 0 100 100 0 100
Slough 0 0 0 0 100
Left Doppler Numerical 0 0 0 0 3
Right Doppler _Numerical 0 0 0 0 3
Prealbumin 0 0 0 0 145
Albumin 0 0 0 0 33.3

Table 8.2 focuses on the upper whisker, or maximum, because it represents the boundary

between the included data and the outliers and extreme data points. Although we calculated the

lower and upper whiskers for all independent variables, we eliminated outliers and extremes based

on length 1, length 2, and depth because these measurements were present in every wound.
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TABLE 8.2: COMPUTATION OF INDEPENDENT VARIABLES FOR LOWER AND UPPER WHISKERS OF BOX PLOTS

Independent Variable Q1-R Lower Q3+R Upper
Whisker Whisker

Length 1 -1.5 0 4.5 4.5
Length 2 -2 0 5.5 5.5
Depth 0 0 0.313 0.313
Undermining 0 0 0 0
Granulation -100 0 200 100
Yellow Necrotic 0 0 0 0
Black Necrotic -100 0 200 100
Slough 0 0 0 0

Left Doppler Numerical 0 0 0 0
Right Doppler Numerical 0 0 0 0
Prealbumin 0 0 0 0
Albumin 0 0 0 0

Unlike the box plots in Figure 8.5 and Figure 8.6, the box plot for this figure depth was created
using combined data from a neural network. In the receipt of the raw data, the clinician did not
input some depth values into the electronic medical record to determine some of the missing
values, we separated the data based on:

depth = —1 (8.4)

This approach allowed the wounds to be classified based on their depth. The subneural-network
analysis had was necessary for prediction of the missing depth values. Figure 8.9 displays the
methodology of how the subneural network predicts the missing depth values. The ideal neural
network has minimal average error for training data scoring and a value of nearly zero average error
for validation data scoring. To prepare the data for input into the neural network, the data had to
be partitioned into 70% (7,000 data points for training) and 30% (3,000 data points for validation)
training and validation data, respectively. This partition was achieved by using random algorithms
to select the 10,000 maximum number of inputs to train the network. To verify the accuracy of the

neural network for the data set, we used multiple random algorithms to partition the same data
[115].

96

www.manharaa.com




SET INPUTS: DETERMINE
PARTITION DATA — LENGTH A, LENGTH B — NEURAL-NETWORK
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NEURAL-NETWORK OUTPUT
SET OUTPUT STATESTIGS = | BASED ON AVERAGE ERROR OF
TRAINING AND VALIDATION

FIGURE 8.9: SUBNEURAL-NETWORK METHODOLOGY FOR MISSING DEPTH VALUES

We designed and analyzed multiple neural networks to ensure the accuracy of the conclusions in
Table 8.3. We tested the network’s accuracy against various combinations of parameter options
and against various random algorithms for data partitioning. Table 8.3 displays the optimal

combination of parameter values that produce minimal average error of training data and validation

data [115].
TABLE 8.3: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS

Variables Parameter/Options

Number of input variables 2 Number of hidden layers 1

Input variables Length_A Number of nodes in hidden layer 1 3

Length_B

Output variable Depth Number of epochs 3,000
Step size for gradient descent 0.02
Weight-change momentum 0.2
Error tolerance 0.001
Weight decay 0

Table 8.4 provides the results of the neural-network analysis that provides the respective weights
of each node within each hidden layer of the network. Similarly, it provides the weights for the

output node, which is depth.

97

www.manharaa.com




TABLE 8.4: INTERLAYER CONNECTIONS WEIGHTS

Hidden layer 1

Input Layer
Length 1

Length 2

Bias node

Node 1 -4.763429826 -3.163800314 -1.083572488
Node 2 -1.056294408 0.625808772 -0.25194046
Node 3 0.565769301 -0.977301608 -0.589001043
Hidden Layer 1
Output layer Node 1 Node 2 Node 3 Bias node
Output node -3.47674292 -0.72515721 -0.4785219583 -2.36592218

Table 8.5 shows the quality and accuracy of the neural network and the amount of error within the

training data scoring and how accurate the network is when tested against the validation data. To

determine the accuracy of the model, we focus on the average error of the training and validation

data scoring. The average error for training should be less than 5%. In this case, the average error

is 0.26 %. The average error for validation data scoring should be nearly zero. In this case, the

average error for validation data is 0.005%, or essentially zero (Table 8.5). This information

supports the use of this network to predict the missing depth values for the remaining patient

wounds.

TABLE 8.5: TRAINING AND VALIDATION DATA-SCORING REPORT

Training Data Scoring Validation Data Scoring

Total sum of squared RMS Average Total sum of squared RMS
errors Error Error errors Error
308.21 0.21 0.0026 105.08 0.187

Average
Error
5.22E-05

Table 8.6 provides a summary of statistics pertaining to the depth of the data set. It summarizes

the statistics of the depth parameter for the combination of training and predicted data.

TABLE 8.6: TRAINING AND VALIDATION DATA-SCORING REPORT

Mini
Valid Standard
Mean mu Maximum Q1 Q3 Range Q Range o
N deviation
m
29085 0.179 0.00 4.000 0.100 0.206 4.000 0.106 0.139
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Figure 8.10 represents the box plot of both the training data and the tested data to determine the
outliers and extreme values based on the depth. Figure 8.10 is the final step in completing the data

cleaning to determine the predicted time to heal.

Box Plot of Depth
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FIGURE 8.10: BOx PLOTS OF DEPTH AFTER PREDICTED VALUES

8.4 GEOMETRICAL ANALYSIS

At most wound clinics, clinicians measure wounds at the point of greatest width and maximum
height perpendicular to the measured width [2]. To determine the geometric characteristics of
various wounds, we developed an acquisition and analysis methodology that acquires, analyzes,
and outputs the necessary wound information for eventual three-dimensional model importing.
Figure 8.11 shows the methodology for both still- and thermal-image analysis. For still-image
analysis, we used the National Institutes of Health (NIH)-sponsored Imaged software [116]. For

thermal-image analysis, we used the ExaminIR system from Flir Systems.

The Java-based, NIH-sponsored, Imaged image-processing-analysis software for scientific
research assisted the image and geometrical analysis in acquiring the spline of the wound from the
wound images. This analysis is necessary to determine the proper wound shape to import into

Solidworks and ultimately build a three-dimensional model of the wound [117].
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Imaged’s developers conceived the software to analyze problems in the life sciences. The
software’s developers wanted it to remain accessible to newcomers and powerful enough for
complex image analysis and processing. Because the software is open-sourced, anyone can

contribute to improvements, ideas, and creation of plug-ins [118].

Image Acquisition Still Image Analysis
| | : _______________ :
I : ! !
STILL PHOTOGRAPH OF ! | |
| | INCREASE CONTRAST OF
: PATIENT WOUND A RGB INAGE ;
] I | |
| I | |
1 | i :
I ' ! !
I 1 |
I I CONVERT T0 8-B1T |
DATA PREPROCESSING | ——\ i i
: - l : GRAYSCALE ;
! |
I I 1 :
I ! 1 ]
: I 1 I
I
, THERMAL IMAGE OF | : '
| SET SCALE IN IMAGE:
! PATIENT WOUND : | X PIKELS = 1CM ——
I
] ! 1 :
I ! | I
e ittt E it 1 |
1 ]
: SET THRESHOLD TO !
: HIGHLIGHT WOUND o
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Thermal-Image Analysis ! |
——————————————————————————————————— 1 I
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| | 1 I

8.4.1 STILL-PHOTOGRAPHY ANALYSIS

FIGURE 8.11: IMAGE-ACQUISITION AND -ANALYSIS METHODOLOGY

Still photography should be a principal tool for the tracking and progress of wound healing.

Unfortunately, the photographing of wounds through the course of treatment is not a standard
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practice. Therefore, we analyze and evaluate how photographing wounds can assist in the

development of wound care and the improvement of wound tracking and progression.

Figure 8.12a shows an example of the original wound image, and Figure 8.12b shows an example

of the binary converted image with emphasis on the wound’s shape and size. The highlighted

yellow area of Figure 8.12b is calculated with Imaged and calibrated with the corresponding ruler in

the photograph. Table 8.7 provides the parameters of the highlighted yellow area of the wound.

(A) RGB IMAGE (B) BINARY IMAGE WITH SCALE

FIGURE 8.12: PATIENT 11 IMAGE ANALYSIS

Table 8.7 provides the quantitative geometrical information about the respective wound and the

calculated respective wound surface area and the wound-bounding rectangle. Note the difference

in value between the area and the calculated area of the wounding rectangle. Currently, clinics can

measure and calculate using only the bounding rectangle. Every subsequent measurement and

comparison uses the change in area of the bounded rectangle.

TABLE 8.7: FIGURE 8.12 GEOMETRIC ANALYSIS RESULTS

Area Mean Minimum Maximum Perimeter Bx By Width Height Bounding
(pixel value) (pixel value) (bounding (bounding Rectangle
rectangle) rectangle) Area
3.037 81.883 29 122 20.135 3.948  3.477 5.259 1.692 8.898

Table 8.8 provides reference information about the size of the image and how many pixels equal

one centimeter.
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TABLE 8.8: IMAGE STATISTICS

Width (pixels) Width (cm.) Height (pixels) Height (cm.) Pixels/cm.

857 1145 10.35 13.83 82.765

Table 8.13 shows the wound boundary. The boundary of the wound was provided using both the
Sobel and the Canny edge-detection algorithms. The purpose of using both algorithms is to

compare the accuracy and precision of the edge detection.

(A) SOBEL EDGE-DETECTION ALGORITHM (B) CANNY EDGE-DETECTION ALGORITHM

FIGURE 8.13: PATIENT 11: WOUND EDGE

Figure 8.14 provides another example of the image analysis of wound’s surface area, perimeter,
and shape. Figure 8.14 shows a more traditionally shaped wound, representing nearly circular
wounds with 90% granulation. Table 8.9 provides the geometrical analysis of the wound area from
Figure 8.14. The product of the width and the height of the bounded rectangle is an approximated
calculated area. In the situation of Patient 2, the error is approximately 43% (Figure 8.14). We
include this error discrepancy to illustrate the difference between measuring the bounding

rectangular box of a wound and measuring the surface area of the wound itself.
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‘1 11438 0 0 0 1160.322 6.429 5.397 4.207 3.889

(A) (B)
FIGURE 8.14: PATIENT 2: RGB IMAGE AND BINARY IMAGE WITH SCALE

Table 8.9 and Table 8.10 provide the same information for other patients.

TABLE 8.9: FIGURE 8.14 GEOMETRIC ANALYSIS RESULTS

Area Mean Minimum  Maximum  Perimeter Bx By Width Height Bounding
(pixel (pixel (bounding (bounding Rectangle
value) value) rectangle) rectangle) Area

11.438 0 0 0 1160.322 6.429 5.397 4.207 3.889 16.36

TABLE 8.10: IMAGE STATISTICS

Width (pixels) Width (cm.) Height (pixels) Height (cm.) Pixels/cm.

463 16.81 622 12.51 37

We used these imaging techniques for all patient photographs to compare them with the actual
measurements. ImagedJ assists us in determining the outline of the wound. Figure 8.15 and Figure
8.16 show the results of using Matlab to determine the actual XY coordinates of the edge of the
wound. These results are a combination of the Sobel and the Canny edge-detection algorithms
[119]. We imported those points into Solidworks to create a spline of the wound and, ultimately, a

three-dimensional, volumetric model of the wound.

Similarly, Figure 8.15 shows the comparison between the Sobel and the Canny edge-detection

algorithms for a patient wound.
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(A) SOBEL EDGE-DETECTION ALGORITHM (B) CANNY EDGE-DETECTION ALGORITHM

FIGURE 8.15: PATIENT 2: WOUND EDGE

Figure 8.16 shows a matrix of the pixel coordinates of the edge from the wound of Patient 2.
Figure 8.16 shows successive marks that indicate the edge of the boundary. Each mark indicates
the location of a boundary pixel and provides the XY coordinates of each pixel that comprises the
wound boundary. The XY coordinates allow us to import the location of each boundary pixel into

Solidworks to create a three-dimensional model of the wound.

FIGURE 8.16: PATIENT 2: WOUND-EDGE TwO-DIMENSIONAL MATRIX OF XY COORDINATES
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Patient 3, with a severe 10-cm.-wide wound on the back of his calf, provides another example of
image analysis. This individual has a history of chronic wound problems, is diabetic, and lacks

proper nutrition.

Figure 8.17, Table 8.11, and Table 8.12 show another patient example using image analysis.

F

10.91x3.23 cm (530x157); 8-bit; 81K
~

0 6 Results
|[Area [Mean  [Min [Max [Perim. [BX  [BY  [Width [Height |
16.035 125.516 125 142 34.195 0.288 0.185 10.126 2.840

(A) RGB IMAGE (B) BINARY IMAGE WITH SCALE

FIGURE 8.17: PATIENT 4: IMAGE ANALYSIS

TABLE 8.11: FIGURE 8.12 GEOMETRIC ANALYSIS RESULTS

Area Mean Minimum Maximum Perimeter Bx By Width Height
(pixel value)  (pixel value) (bounding (bounding
rectangle) rectangle)

16.035 125.516 125 142 34.195 0.288 0.185 10.126 2.840

TABLE 8.12: IMAGE STATISTICS

Width (pixels) Width (cm.) Height (pixels) Height (cm.) Pixels/cm.

530 157 10.91 3.23 123.41

Similarly, Figure 8.18, and Figure 8.19 represent the final wound boundary output for Patient 4. The

respective spline in Figure 8.18 was imported into Solidworks
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(A) SOBEL EDGE-DETECTION ALGORITHM (B) CANNY -ETECTION ALGORITHM

FIGURE 8.18: PATIENT 4: WOUND EDGE

FIGURE 8.19: PATIENT 4 FINAL WOUND OUTLINE ANALYZED IN MATLAB

The image of Patient 4’'s wound was analyzed to determine the XYZ pixel coordinates and

imported into Solidworks to render a three-dimensional model of the wound.

8.4.2 THERMAL-PHOTOGRAPHY ANALYSIS

Thermal imaging and analysis were performed with a ThermaCAM S65 infrared camera from Flir
Systems. The camera has a with a 38.5-micron lens and provides 38.5-micron/pixel resolution
(Figure 8.20 and Appendix D). The accuracy of this camera is +2°C or +2% of the reading — a
higher tolerance than we would have chosen. Because the average temperature difference
between an ulceration and the surrounding environment is approximately +2°C, we would have
preferred a camera with a smaller tolerance deviation. The objective of using the ThermaCAM was
to collect thermal images of wounds to track the temperature change over time. We measured the
center of the wound’s temperature and used that measurement to compare changes over time.

We photographed the patient’s wound approximately three times per visit over a three-week
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period and averaged the temperature of the wound’s center. We collected the data on live patients

rather than retrospective patients.

FIGURE 8.20: FLIR THERMACAM S65 THERMAL-IMAGING SYSTEM
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FIGURE 8.21: PATIENT 15 IMAGE COMPILATION
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Figure 8.21 documents the full image analysis of patient 15’s wounds through RGB image analysis,
binary image analysis, and wound thermal imaging. Table 8.13 provides the same image statistics
as those for the previous patients. The addition to these geometric results is the inclusion of the

wound temperature.

TABLE 8.13: FIGURE 8. GEOMETRIC ANALYSIS RESULTS

Area  Mean Maximum Maximum Perimeter Bx By Width Height Thermal
(pixel (pixel (bounding (bounding Temperature
value) value) rectangle) rectangle)

0411 O 0 0 7.187 2.527 4716 0.762 1.082 34.3C

8.4.3 THREE-DIMENSIONAL CAD-MODEL DEVELOPMENT

To create a three-dimensional CAD Model from a two-dimensional image, we had to develop the
proper methodology to prepare the image for processing. That process included image
manipulation from the RGB color space to the LAB color space. This slight modification is key in
allowing the Sobel and Canny edge-detection algorithms to better detect the shape of the wound.
Figure 8.22 shows the final input image to the three-dimensional CAD system. Figure 8.22 allows
us to determine the pixel-to-centimeter relationship, allowing us to covert from pixels back to

centimeters in preparation for point-cloud importing.

- Rle;lulis
| [Area ]Mean [Min [Max [Perim. [BX _ [BY _ [Width [Height |
‘l 11.438 0 0 0 1160.322 6.429 5.397 4.207 3.889

(A) BINARY IMAGE WITH BOUNDARY (B) CROPPED AND FILLED WOUND

FIGURE 8.22: PATIENT 2 PIXEL-TO-CENTIMETER CONVERSION
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This methodology determines the pixel XY coordinates of the boundary of the wound, eliminates
duplicates, and cleans the collection of XY coordinates in preparation for Solidworks data
importing. Cleaning of this data is of the utmost importance because, in many instances, the
boundaries are so complex, that single pixels are on or nearly on top of one another. That situation
is acceptable for analysis of a two-dimensional matrix; however, with three-dimensional geometric
processing, it creates self-intersecting splines, which prevent two-dimensional-to-three-
dimensional geometry. When the data is clean, the methodology exports the table of XYZ points
(Table 8.14). This text file allows the three-dimensional CAD system to construct a series of XYZ

points to construct the desired shape using point-cloud theory [120, 121].

The XYZ coordinates in Table 8.14 are then converted to centimeters, which allows proper
importing of the three-dimensional system. Solidworks has a built-in ScanTo3D, which allows us to
import a series of cloud points to create a solid three-dimensional model. ScanTo3D performs a
series of reverse-CAD functions that creates a three-dimensional model from a two-dimensional
image [120]. Figure 8.23 shows the modified ScanTo3D methodology and details the process of
extracting the boundary points of the wound and importing them into Solidworks. Although a
variety of ways exist to import XYZ coordinates into Solidworks, one method of inserting a curve
through XYZ coordinates does not work for boundary creation. When inserting a curve of XYZ
coordinates in Solidworks, the order of the boundary points causes system instability.

TABLE 8.14: GEOMETRIC ANALYSIS RESULTS

X (Pixel) Y (Pixel) Z (Pixel)
150 756 0
151 651 0
151 670 0
151 671 0
168 564 0
168 565 0

With edge-detection algorithms, such as the Sobel or Canny, the boundary-trace algorithms
outlines an object (Figure 8.24). The boundary-trace algorithm determines the initial starting point,
Pixel P, with an assigned start direction — that is, northeast. From there, the algorithm checks the
surrounding seven remaining pixels and records the XY coordinates of each nonempty pixel.

Although the boundary-trace and edge-detection algorithms acquire the boundary of object, XY
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coordinates are repeated due to the innate characteristics of edge- and boundary-detection

methods.
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Figure 8.23: ScanTo3D Methodology
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FIGURE 8.24: BOUNDARY-TRACE PROCESS

8.4.3.1 Calculating Wound Volume Through Three-Dimensional Modeling

Using the methodology developed in Figure 8.23, we created multiple three-dimensional models of
wounds over time. This time-varying analysis allows us to see the change in mass, volume, and
surface area over an observed period.

Using Patient 11, we have documented the wound over a 28-day period.

TABLE 8.15: PATIENT 11 HUMAN WOUND MEASUREMENTS

Day Length 1 (cm.) Length 2 (cm.) Depth (cm.) Volume (cm.’) Surface Area (cm.?)
0 8.0 1 0.5 4 8.0
7 7.0 1 0.5 3.5 7.0
14 7.0 1 0.5 3.5 7.0
21 6.2 1 0.5 3.1 6.2
28 4.0 0.8 0.5 1.6 3.2

Using the imaging techniques in Figure 8.11, we compared the calculated measure of surface area
based on the measurements in Table 8.15 and the calculated wound properties based on image
analysis (Table 8.16).

TABLE 8.16: PATIENT 11 SOLIDWORKS WOUND MEASUREMENTS

Day Length 1 Length 2 Depth Volume Surface Area
7 6.35 1 0.1 0.18 6.79
21 4.74 1 0.089 0.13 5.32
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One of the necessary assumptions pertaining to the wound healing modeling is that the shape of
the wound throughout the course of healing does not drastically change the shape and cross-
section of the wound. Thus, we assume that the reduction in size proportionally is based on the
dimensions of the wound boundary. The purpose of the inclusion of Solidworks was to show the
measurement difference between human wound measurements and computerized measurements.
Through Solidworks and image analysis, we were able to acquire a more accurate measurement of
the size of the wound, including surface area and volume. This feature enabled us to better monitor
the change in wound size over time. Figure 8.25 shows a Solidworks model of a patients’

complex-shaped wound.

R S

(A) Isometric View

(B) Top View

(C) Side View

FIGURE 8.25: VARIOUS VIEWS OF PATIENT 11’S WOUND SHAPE AND BOUNDARY
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8.5 DATA PREPROCESSING: STAGE I

During The second stage of data processing, we used only those wounds for which we had
retrospective data for more than five visits — that is, more than approximately 40 days. This data
sorting and cleaning guaranteed that we could build an accurate and robust predictive model. The
purpose of the second stage was to categorize wounds based on their aspect ratio during the

patient’s initial visit. Equation (8.5) yields the aspect ratio:

A ¢ Ratio — Length 1 8.5
spect Ratio = Length 2 )

The aspect ratio represents the shape of the wound. For example, if the aspect ratio is 1-to-1, the
shape of the wound is most likely circular. If it is 3-to-1, the aspect ratio is more elliptical in shape.
We hypothesized that the difference in the wound shape results in different healing patterns and

wound behavior.

Based on the aspect ratio, the wound and all of its subsequent measurements were grouped into

three groups of smaller data sets:

Group 1: Aspect Ratio < 1 (8.6)
Group 2: 1 < Aspect Ratio < 2 8.7)
Group 3: Aspect Ratio > 2 (8.8)

Before building the models, we needed to determine whether we could achieve the same accuracy
and precision using calculated inputs rather than raw inputs to the algorithm as predictive
variables. In other words, we needed to determine whether volume, the calculated input; length 1;
length 2; and depth, the raw inputs, differed in their output accuracy. Unfortunately, we discovered
that the small depth measurements drastically skewed the calculated volume. Using volume as an
input rather than the raw inputs caused the algorithms to be less accurate in their predictive

capabilities. Equation (8.9) illustrates this problem.
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a(b+c)+ab+ac

This equation confirmed that we required raw, independent variables as variable. To verify the
hypothesis, we graphed a sample of data from each aspect-ratio group in Figure 8.26 to Figure
8.41. Each aspect ratio revealed different wound-healing characteristics based on volume. Figure
8.26 and Figure 8.27 show the wounds with an aspect ratio of less than 1 and show a distinctive
pattern and behavior of increasing wound volume before decreasing wound volume. This result
differs from that in Figure 8.4 and Figure 8.35, in which wound volume seems to dramatically
decrease over time, as opposed to what occurs with wounds having an aspect ratio of greater
than 2 (Figure 8.41). This category of wounds showed a steady decrease in volume over time but a
smaller gap between starting volume and ending volume. This phenomenon appears to be unique

to wounds with an aspect ratio of greater than 2 as opposed to those wounds with an aspect ratio

of less than 2.
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FIGURE 8.34: ASPECT RATIO OF 1 TO 2, VOLUME VERSUS TIME

\
|
|
|
\
\
I
. |
7 |
/ |
/
s \
\ | |
/ % | \

‘.' .\I f

_ \ |

\ |

o~ ' I
T A 1
- \ | \

¥ |
- |
S 3 g
~ f
- A | /
/ e . 4 | =
& o iy S
e ~ = A\ T S
— p— — \ ~, e
— 1 . o ¥
ﬁ . = \
— _'_'_._._ — i - —— i
—5i — = ———— - — = — - —— H — &
7 2 7 2 7 52 57 62 &7 n ] 8

awﬁ‘pn

www.manharaa.com



274 QI - QIAG =—040T == OG5] =TS G711 = 1G04 12007 8= 13861 o 13086~ 13932

FIGURE 8.35: ASPECT RATIO OF 1 TO 2, VOLUME VERSUS TIME

Time

e G027 —#— G068 M- E114 —8— §3)] —+—FI37 —=—ERIT —=—T1E] —w— 431 —6- 002G —

—#—5170 ~@— 5408 —A— 5491 —H—GE5() —W—5TI5 —8— §TG5 —— 5706

awnjop

ezl ik

www.manharaa.com



NI SNSHIA | HLONTT ‘g OL | 40 OILYY 103dSY :9€'8 IHN9I

awiy

T yi8usT

©
A
—

www.manharaa.com




Time

127

RATIO OF

FIGURE 8.37: ASPECT

www.manharaa.co



427 47
Time

128

2 VERSUS

2, LENGTH

RATIO OF

FIGURE 8.38: ASPECT

www.manharaa.co



www.manharaa.co



-‘.
4R54 5003

—=—g636 ———4534 —

Time

FIGURE 8.40: ASPECT RATIO OF 1 TO 2, DEPTH VERSUS TIME

—-2066 ——32331 =—+—2372 ——2426 ——q431 =—4—1561 —S=679 ——3IT6 ——3360 —W=3578 —=—3948 ——4432 -W—4520 ——4548

—a—=g0 =+=§31 -—=—1838 -—=—1901

130

www.manharaa.com



NI SNSHIA INNTOA ‘2 NVH | H31Y3HD) 40 OILYY 103dSY : L8 3HNOIH

WU I0F-e- BIES-@— OIES—e— O09EF—=— FIH—w— BIII-»- PIN-8 FLT—e—

awiy

i w il 9 Fit (41 i [ LE 43 LT [£4

0

ST

SE

awnjop

1
[ep)
=

www.manharaa.com




I SNSHIA 2 HLONTT ‘2 NVH | H3LV3HE) 40 OILVY 103dSY :2#'8 34NOi

www.manharaa.com

HIB 5819 B965-@- O6IES—a— SOLP—— D9P—w— PIH—w— RIIT-—w- FIDI—@— PLLT—0—

(9]
™
—

Z yi8uan




JNIL SNSHIA HLd3J ‘2 NVH] H31V3HY) 40 OlLyY 103dSY S8 35N9I

HIB-— SEI9—— GIES—e— O[9EP—s— PI9T—=— RITE—¥— PI0Z-—@— PLLT——

awiy

£ i L 9 4] 5 [ i 1 it T i w s 49 9 o

o

ST

SE0

yadag

™
™
—

www.manharaa.com




8.5.1 DETERMINATION OF HEALED THRESHOLD

Because we categorized the variables based on aspect ratio, we have produced three neural-
network models. The development of a theoretical, predictive model means that a difference exists
between ideal and actual wound-healing parameters. Wound-care physicians consider a wound
healed when the wound measures O cm. in length, width, and depth. Given that information, we

never saw a 100%-healed wound in the data we received.

For the theoretical model, we have developed statistically supported assumptions that the
determined healed threshold is based on the lower or upper limit of the respective input variable
box plots. For example, if the input parameter is volume, we assume that the 25% percentile is
healed. Similarly, if the input parameter is granulation, we would use the upper limit, 75% as the
healed, or ideal, parameter. We repeated this process for each input variable and developed an
ideal set of input variables. We then fed this ideal set of inputs into the designed neural network,
which output a numerical value as time to heal. This single output, rather than a measurement of O
cm. in length, width, and depth, represents a wound’s stage in the healing process. We have
observed, hypothesized, and supported the theory that a healing wound has asymptotic
properties, and, as the wound heals, its asymptotic curve will approach the value of zero.
However, Figure 8.44 shows a graph of time versus wound size (generically) approaching an
asymptote of zero. One of the primary issues with using a measurement of O x 0 x 0 cm. is that the

asymptote may take a long time to reach zero or may never reach zero.
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0 Time”

FIGURE 8.44: WOUND-HEALING TRAJECTORY APPROACHING AN ASYMPTOTE OF O

8.5.1.1 Aspect Ratio of Less Than 1: Volume

To design and develop a model using volume calculations, we performed similar data cleaning
based on the volumetric parameter. We eliminated outliers based on the upper whisker. We also
used the box plot in Figure 8.45 to determine the lower quartile value for the ideal data set.
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Box Plot of VOLUME: Aspect Ratio < 1

VOLUME

O Median = 0.1846

" - 25%-75%

ot —_ =(0.0375, 0.84)

T Non-Outlier Range
= (0, 2.007)

o Qutliers

-1 * Extremes

FIGURE 8.45: VOLUME BOX PLOT FOR AN ASPECT RATIO OF 1

Table 8.17 gives the numeric values of the lower and upper quartiles from the preceding box plot.

TABLE 8.17: COMPUTATION OF INDEPENDENT VARIABLES FOR LOWER AND UPPER WHISKERS OF BOX PLOTS

Independent Variable Lower Quartile Upper Quartile
Volume 0.0375 0.84
Granulation Tissue 0 100

Using the lower or upper limits of the box plots to determine the threshold of healed versus not
healed wounds assisted us in deciding which input variables of the network were relevant. The two
input variables deemed relevant showed variability between their 25" and 75" quartiles and was
the calculated volume of the wound and granulation tissue.
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TABLE 8.18: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS

Variables Parameter/Options

Number of input 2 Number of hidden layers 1

variables

Input variables Volume, granulation Number of nodes in Hidden 1
layer 1

Output variable Time remaining Number of epochs 7,000

Step size for gradient 0.001
descent

Weight change momentum 0.01
Error tolerance 0.001
Weight decay 0

We tested and compared the theory by developing two neural-network models. The first model
contained all independent variables, including volume, granulation, yellow necrotic tissue, slough,
right Doppler reading, prealbumin, and albumin. The second model contained just two
independent variables: volume and granulation. The difference in determining the threshold for time
to heal was virtually equal. The first model produced a threshold value of 27.47. Table 8.18 shows
the parameters of the first neural-network model, including the values for the hidden layers of the

first neural-network model for both the inputs and the output.

TABLE 8.19: NEURAL-NETWORK PARAMETERS, ASPECT RATIO LESS THAN 1

Input Layer
Hidden Layer 1 Volume Granulation Bias node
Node # 1 -2.31343465 0.179825194 -0.497878206

Hidden Layer 1
Output Layer Node 1 Bias Node

Output Node -1.473236968 -0.198861936

Table 8.20 presents the results based on the training and validation scoring report. The average

error using volume and granulation as the independent inputs resulted in £0.026 days.
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TABLE 8.20: TRAINING- AND VALIDATION-DATA SCORING REPORT

Training-Data Scoring Validation-Data Scoring

Total sum of squared RMS Average Total sum of squared RMS Average
errors Error Error errors Error Error
139,660.7864 23.827  0.023 73096.16 26.3847 0.02645

Based on the information from the neural network and using the lower quartile of the volume
variable and the upper quartile value of granulation, the predicated value of time to heal returned a
predicted value of 27.96, or 28 days.

8.5.1.2 Aspect Ratio of Less Than 1: Length 1, Length 2, and Depth

Similarly, we produced a neural-network model to determine whether we could improve the
accuracy of the model using the individual wound characteristics rather than a calculated input,
such as volume. Table 8.21 to Table 8.24 provide the details of this revised neural-network model
for the individual and calculated inputs. By using more independent input variables, we have
lowered the number of hidden layers and the number of epochs are fewer than those of the
previous model in Table 8.17 through Table 8.20. However, the most noticeable difference
between the two models is the accuracy of the validation data. The earlier model had an average
error of +0.26 days, whereas the model in Table 8.21 and Table, using more independent
variables, returns an average error of +0.34 days. This discrepancy indicates that a neural-network
model may be more reliable and robust when it uses raw independent variables, such as Length 1,
Length 2, and depth, rather than a calculated independent variable, such as volume. The predicted
healed threshold for this model was calculated at 28.858 days.

TABLE 8.21: COMPUTATION OF INDEPENDENT VARIABLES FOR LOWER AND UPPER WHISKERS OF BOX PLOTS

Independent Variable Lower Quartile Upper Quartile

Length 1 0.50 2.0
Length 2 0.60 2.4
Depth 0.10 0.20
Granulation tissue 0 100
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TABLE 8.22: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS

Variables Parameter/Options
Number of input 4 Number of hidden layers 1
variables
Input variables Length 1, Length Number of nodes in Hidden 3
2, Depth, Layer 1
Granulation
Output variable Time remaining Number of epochs 100

Step size for gradient 0.001
descent

Weight change momentum 0.1
Error tolerance 0.007
Weight decay 0

TABLE 8.23: NEURAL-NETWORK PARAMETERS, ASPECT RATIO OF LESS THAN 1

Input Layer

Hidden Layer 1 Length 1 Length 2 Depth Granulation  Bias Node
Node 1 0.126943 -1.20982 -1.785782 0.8097 0.042952
Node 2 -0.8225 0.7417 0.03296 0.8035 0.49139
Node 3 1.06202 -0.9927 -0.5586 -0.2470 0.43752

Hidden Layer 1

Output Layer Node 1 Node 2 Node 3 Bias Node
Output Node -0.699716628 0.249217775 -0.8221 -0.19055

TABLE 8.24: TRAINING- AND VALIDATION-DATA SCORING REPORT

Training Data Scoring Validation Data Scoring

Total sum of squared RMS Average Total sum of squared RMS Average
errors Error Error errors Error Error
137963.8469 23.6816 0.5239 72217.08746 26.2256 0.03359

The predicted value for the threshold of time is 28.858 days.
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8.5.1.3 Aspect Ratio of Greater Than 1 and Less Than 2: Volume
Similar to the method described in Section 8.5.1.1, the method in this section the same with the
exception of a different set of testing data. Figure 8.46, Table 8.25, and Table 8.26 are the

parameters for the neural-network model for Group 2.

Box Plot of VOLUME: 1 <= Aspect Ratio <= 2

5
*®
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*
*
w
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= (0.0358, 0.4641)
1 Non-Outlier Range
= (0, 1.0725)
o Qutliers
-1 * Extremes

FIGURE 8.46: VOLUME BOx PLOT FOR ASPECT RATIO OF 2

TABLE 8.25: COMPUTATION OF INDEPENDENT VARIABLES FOR LOWER AND UPPER WHISKERS OF BOX PLOTS

Independent Variable Lower Quartile Upper Quartile

Volume 0.035833 0.4641
Granulation tissue 0 100
Yellow necrotic 0 10
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TABLE 8.26: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS, FOR AN ASPECT RATIO
GREATER THAN 1 AND LESS THAN 2

Variables Parameter/Options
Number of input 2 Number of hidden layers 2
variables
Input variables Volume, granulation, Number of nodes in Hidden 1
Yellow necrotic Layer 1
# Nodes in HiddenLayer-1 1
Output variable Time remaining Number of epochs 6500

Step size for gradient 0.001
descent

Weight-change momentum 0.02
Error tolerance 0.001
Weight decay 0

Table 8.27 is the neural network parameters for Group 2. Similarly, Table 8.27 states the numerical
values of input and output hidden layer nodes.

TABLE 8.27: TRAINING- AND VALIDATION-DATA SCORING REPORT

Training-Data Scoring Validation-Data Scoring

Total sum of squared errors RMS Total sum of squared errors RMS Error Average Error
Error

166836.5852 23.66 0.025 76008.91744 24.368  0.0126
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TABLE 8.28: NEURAL-NETWORK PARAMETERS, ASPECT RATIO OF GREATER THAN 1 AND LESS THAN 2

Input Layer
Hidden Layer 1 Volume Granulation Yellow Necrotic Bias Node
Node 1 -4.784279092 -0.41192969 -1.027211039 0.677571236
Hidden Layer 1
Output Layer Node 1 Bias Node

Node 1

-29.84249145

12.57158369

Output Layer
Output Node

Hidden Layer 2
Node 1

-0.690697574

Bias Node

-0.54806653

The predicted value for the threshold of time is 33.118 days.

8.5.1.4 Aspect Ratio Greater Than 1 and Less Than 2: Length 1, Length 2, Depth

Unlike the neural network model presented in Section 8.5.1.3, figure, Figure 8.48, and Figure 8.49

and tables 8.Table 8.29, Table 8.30, and 8.31 describe the neural-network model using length 1,

length 2, depth, and granulation, rather than volume, as the inputs.
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FIGURE 8.47: LENGTH 1 BOX PLOT FOR ASPECT RATIO GREATER THAN 1 AND LESS THAN 2
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FIGURE 8.48: LENGTH 2 BOX PLOT FOR ASPECT RATIO GREATER THAN 1 AND LESS THAN 2
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Box Plot of DEPTH
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FIGURE 8.49: DEPTH BOX PLOT FOR ASPECT RATIO OF GREATER THAN 1 AND LESS THAN 2

TABLE 8.29: COMPUTATION OF INDEPENDENT VARIABLES FOR LOWER AND UPPER WHISKERS OF BOX PLOTS

Independent Variable Lower Quartile Upper Quartile

Length 1 0.60 1.65
Length 2 0.60 1.80
Depth 0.10 0.20
Granulation tissue 0 100

TABLE 8.30: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS

Variables Parameter/Options

Number of input 4 Number of hidden layers 1
variables

Input Variables Length 1, Length 2, # Nodes in HiddenlLayer-1 10

Depth, Granulation
Output Variable Time Remaining # Epochs 800
Step size for gradient 0.10
descent
Weight change momentum 0.60

Error tolerance 0.01
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Weight decay 0

The “healed threshold” when the 1 < aspect ratio < 2 with four independent variables is 32.32

days.

TABLE 8.31: TRAINING AND VALIDATION DATA SCORING REPORT
Training Data Scoring Validation Data Scoring
Total sum of squared RMS Average Total sum of squared RMS Average
errors Error Error errors Error Error
158528.8208 23.06460 0.20083 76484.559 24.4445 0.01695

8.5.1.5 Aspect Ratio > 2: Volume
Similarly, Figure 8.50, Table 8.32, Table 8.33, Table 8.34, and Table 8.35 are the neural network
model parameters and output that describe the model specific to Group 3 using volume,

granulation tissue, and yellow necrotic tissue as inputs.

Box Plot of VOLUME: Aspect Ratio > 3
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FIGURE 8.50: VOLUME BOX PLOT FOR ASPECT RATIO=3
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TABLE 8.32: COMPUTATION OF INDEPENDENT VARIABLES FOR LOWER AND UPPER WHISKERS OF BOX PLOTS

Independent Variable Lower Quartile Upper Quartile

Volume 0.0320 0.3325
Granulation Tissue 0 100
Yellow Necrotic 0 10

TABLE 8.33: NEURAL NETWORK PREDICTION VARIABLES AND PARAMETERS, 1 < ASPECT RATIO < 2

Variables Parameter/Options
# Input Variables 2 # Hidden layers 2
Input Variables Volume, Granulation, # Nodes in HiddenlLayer-1 1

Yellow Necrotic
# Nodes in HiddenlLayer-1 1
Output Variable Time Remaining # Epochs 365
Step size for gradient 0.001
descent

Weight change momentum 0

Error tolerance 0.001
Weight decay 0
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TABLE 8.34: NEURAL NETWORK PARAMETERS, 1 < ASPECT RATIO < 2

Input Layer
Hidden Layer # 1  Volume Granulation Yellow Necrotic Bias Node
Node # 1 -0.990118719 -0.720849937 -0.121392742 -0.348850913

Hidden Layer # 1
Output Layer Node # 1 Bias Node

Node #1 1.710329786 3.805476422

Hidden Layer # 2
Output Layer Node # 1 Bias Node

Output Node -0.658233027 0.041009775

Table 8.35 is the neural network training and validation data outputs for aspect ratio Group 3. The
predicted value for the threshold of Time is 29.97 days.

TABLE 8.35: TRAINING AND VALIDATION DATA SCORING REPORT

Training Data Scoring Validation Data Scoring

Total sum of squared RMS Error  Average Total sum of squared RMS Average
errors Error errors Error Error
38404.54498 25.73222352 -0.50 12382.60388 22.255 0.013

8.5.1.6 Aspect Ratio > 2: Length 1, Length 2, Depth
Similar to the previous box plots, Figure 8.51, Figure 8.52, and Figure 8.53 correlate to numerical
data in Table 8.36 regarding the ideal set of wound parameter values. Additionally, Table 8.37 and

Table 8.38 are the parameters for the neural network and the respective hidden layer node values.
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FIGURE 8.51: LENGTH 1 BOX PLOT FOR ASPECT RATIO > 2
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FIGURE 8.52: LENGTH 2 BOX PLOT FOR ASPECT RATIO > 2
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FIGURE 8.53: DEPTH BOX PLOT FOR ASPECT RATIO OF GREATER THAN 2

TABLE 8.36: COMPUTATION OF INDEPENDENT VARIABLES FOR LOWER AND UPPER WHISKERS OF BOX PLOTS

Independent Variable Lower Quartile Upper Quartile

Length 1 0.50 1.8
Length 2 0.50 1.1
Depth 0.1138 0.2015
Granulation tissue 0 100
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TABLE 8.37: NEURAL NETWORK PREDICTION VARIABLES AND PARAMETERS

Variables Parameters/Options

Number of input variables 4 Number of hidden layers 1

Input variables Length 1, Length 2, Number of nodes in Hidden 11
depth, granulation Layer 1

Output variable Time remaining Number of epochs 8000

Step size for gradient descent 0.36

Weight change momentum 1
Error tolerance 0.001
Weight decay 0

The healed threshold, when the aspect ratio is greater than 2, with four independent variables is

12.27 days.

TABLE 8.38: TRAINING- AND VALIDATION-DATA SCORING REPORT
Training Data Scoring Validation Data Scoring
Total sum of squared  RMS Average Total sum of squared  RMS Average
errors error error errors error error
5195.663598 9.464692 2.026675 29648.30695 34.43737 0.00669

8.6 SUMMARY

Table 8.39 presents a summary of the predicted threshold to calculate an estimated time to heal

using volume.

TABLE 8.39: SUMMARY OF PREDICTED THRESHOLD VALUES (DAYS) TO CALCULATE TIME TO HEAL

Aspect Ratio of Aspect Ratio of 1 to 2 Aspect Ratio of
Less Than 1 Less Than 2
27.96 33.12 29.97

Table 8.40 presents a summary of the predicted threshold to calculate an estimated time to heal
using Length 1, Length 2, and depth.
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TABLE 8.40: SUMMARY OF PREDICTED THRESHOLD VALUES (DAYS) TO CALCULATE TIME TO HEAL

Aspect Ratio of Less Aspect Ratio of 1 to 2 Aspect Ratio of Less
Than 1 Than 2
28.858 32.32 12.27

Although the corresponding values of Table 8.39 and Table 8.40 are similar, the major difference is
in the context of the algorithm. We have concluded that the behavior of the algorithms using
volume as an input — that is, the calculated input — does not accurately reflect the change in time
to heal. We attribute this inaccuracy to the large numerical value difference between the depth

variable and the length 1 and length 2 variables. In other words, the depth variable is smaller than

the length variables.
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CHAPTER 9

Wound-Healing Predictive Model

We now extend and apply the chosen modeling techniques of Chapter 7 to the healing statistical

prediction model.

We have multiple predictive models for the data to compare and contrast the results and accuracy.
We focused on nonlinear regression and neural networks. We pursued other regression models,
such as multiple linear-regression predictive models, but the behavior of the data was too complex
for linear regression. However, linear regression is a common predictive-modeling technique. As a
comparison to nonlinear methods, we included the results.

9.1 MULTIPLE LINEAR REGRESSION

We developed one model using multiple linear regression. This model used the same predictive
variables as the neural-network models. We developed the linear-regression model simply to
compare the reliability of the linear-regression algorithm and how the number of predictor variables
impacts the final linear algorithm.

The first regression model, including predictor variables Length 1, Length 2, depth, and

granulation, is given by:

y(t) = 6.60 * L1 —4.53 %« L2 —3.69 * D — 0.006 * G + 26.04 9.1

Due to the complexity of the data, the behavior of the data is nonlinear. According to the model

feedback, the linear-regression model does not fit the data well based on the statistics of model
(Table 9.1).
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TABLE 9.1: STATISTICS OF MULTIPLE LINEAR-REGRESSION MODEL (FOUR DEGREES OF FREEDOM)

Value

Residual dF 597

R-squared 0.036

Standard deviation estimate 23.88
Residual SS 340305.3438

Using the R? statistic, we see that the data is not a good fit for a linear regression model. The
average error for this model is approximately four days for the validation data. To determine the fit

of the data, we evaluated the adjusted R? value and Mallow’s Ce. In this model, €, = 0.036, and

Rfldjusted = 0.029 reflecting a poor fit to the data.

TABLE 9.2: TRAINING- AND VALIDATION-DATA SCORING REPORT, MULTIPLE LINEAR REGRESSION
(FOUR DEGREES OF FREEDOM)

Training Data Scoring Validation Data Scoring

Total sum of RMS Error  Average Total sum of squared RMS Average
squared errors Error errors Error Error
340305.35 23.78 0.00 163820.42 25.20 3.78

9.2 NONLINEAR REGRESSION: SURVIVAL ANALYSIS

We employed the Cox regression method, which is commonly used to represent the amount of
time to an event and, in this case, represents the time to heal. The Cox regression can
accommodate both discrete and continuous measures of event times [122]. Cox regression
models affect the covariates of the hazard rate but leave the baseline hazard rate, allowing us to
evaluate the model when all the predictors are zero [123].

Using IBM’s SPSS predictive analytics software, we modeled the data using Cox regression to
determine a better predictive model than linear regression or regression trees. We developed two
Cox regression models. The first model included all of the available covariates. The second model

included the most common wound measurements across wound clinics.

Equation (9.2) is the Cox predictive model incorporating all the predictor variables. However, not

every hospital and clinic collects this information. For a variety of reasons, there appears to be a
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discrepancy in how to judge certain wound characteristics, such as the percentage of black or

yellow necrotic tissue.

h(t) — [ho(t)] % e(—0.4-33L1—0.359L2—7.009D+0.327U+0.00ZG—0.003YNT—0.003BNT+0.001S)
9.2)

Figure 9.1 through Figure 9.5 display the survival plots that result from survival analysis. Figure 9.1
shows the data when all of the predictors are at their mean values and the aspect ratios are the
reference categories. The purpose of using the means of the predictor variables is to see on
average how many wounds heal at a given time. When all predictor variables are average, a small
percentage of people are healed within 30 days of obtaining treatment at a wound clinic (Figure
9.1). For chronic, nonhealing wounds, this reflection supports the theory that chronic wound

healing takes a longer time to heal.

Figure 9.5 displays the same general characteristics of the data except it separates the data
thereby aspect ratios. Figure 9.5 shows that the behavior of data with aspect ratios of 1 and 2
clearly differ from each other (p=0.000), whereas the data in aspect ratios 2 and 3 are more similar

in behavior (p=0.237). Table 9.3 shows the covariate means.

TABLE 9.3: COVARIATE MEANS

Mean
Length 1 1.370
Length 2 1.602
Depth 0.162
Undermining 0.003
Granulation 51.064
Yellow Necrotic Tissue 12.266
Black Necrotic Tissue 22.898
Slough 7.833

The focus of the nonlinear regression predictive model is to show the difference between linear,
nonlinear, and neural-network modeling. Cox regression, simply a function of the baseline
cumulative hazard, provides the ability to show the effect of time in a nonlinear format. Unlike
neural networks, Cox regression outputs a respective nonlinear mathematical equation.
Furthermore, we can evaluate the algorithm with only the baseline cumulative hazard and no

predictors in the model. So, when all the predictor variables are zero, the Cox regression function
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is equal to the baseline cumulative hazard. Unlike linear regression, in which the intercept is a fixed
number, the intercept of the Cox regression is the baseline hazard function. Figure 9.6 shows the
baseline cumulative hazard function as a curve that displays healing purely from the perspective of
passing time. If the predictor variables have any effect on the model, including them in addition to
the hazard function will shift the curve. If the predictor variables have little impact, the final Cox
regression model will appear similar to the baseline hazard function. These graphs represent the
percentage of wounds that are healed at a given time after the wound’s initial treatment.
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FIGURE 9.5: SURVIVAL FUNCTION DIFFERENTIATED BY ASPECT RATIOS
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To properly calculate the Cox regression, we need to include the value of the baseline cumulative
hazard, hy(t), at time t. Table 9.5 is the survival table, which shows the value of hy(t) at every
recognized time value. The survival column in Table 9.5 represents the percentage of wounds with
average values of the predictor variables that have survived by time t that corresponds to the plot
in Figure 9.1. This is the percentage of people of 100% who have survived up to the end of time
interval t. This analysis indicates that chronic wounds take weeks and months to heal rather than
days and reaffirms the findings in literature. The current study validates the challenge of predicting

the time until chronic, nonhealing wound closure.

To determine the validity of the Cox regression model, we analyzed a number of factors that are
associated with the quality of Cox regression output. Among these factors, the chi-square statistic
and its significant level represent the probability of obtaining the chi-square statistic (366.016) given
that the null hypothesis is true (Table 9.4). In the current case, the model is statistically significant

because the p-value is less than 0.000.

TABLE 9.4: OMNIBUS TESTS OF MODEL COEFFICIENTS

-2 Log Change From Change From
o Overall (score) ) )
Likelihood Previous Step Previous Block
Chi- Chi-
Chi-square df Sig. df  Sig. df  Sig.
square square
7368.974 366.016 8 .000 404.385 8 .000 404.385 8 .000

Each predictor variable in the equation has corresponding statistics to determine their relevance
and impact on the final regression equation. Cox regression predictor variables have six pertinent
statistics that help describe their relevance to the equation (Table 9.6). B predicts the dependent
variable and the independent variable, and Exp(B) predicts the odds ratio for the predictors. Table
9.7 provides more details on these statistics. SE is the standard error associated with the algorithm
coefficients. We use the standard error to test whether the parameters significantly differ from zero.
Similarly, the Wald and significance values provide the Wald chi-square value and two-tailed p-
value. The Wald statistic tests the null hypothesis. The significant value is the p-value that
determines whether those variables are statistically significant. The p-value should be less than
alpha — that is, 0.05. Through the analysis, we find that the undermining, granulation, yellow and
black necrotic tissue, and slough values all have a p-value greater than 0.05. Thus, these

coefficients are not statistically relevant to the regression algorithm.
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TABLE 9.5: SURVIVAL TABLE

Time Baseline Cumulative At Mean of Covariates

Hazard Survival SE Cum
0 0.002 1.000 0.000 0.000
3 0.006 0.999 0.000 0.001
4 0.007 0.999 0.000 0.001
5 0.008 0.999 0.000 0.001
6 0.017 0.998 0.000 0.002
7 0.235 0.976 0.002 0.024
8 0.254 0.974 0.002 0.026
9 0.267 0.973 0.002 0.027
10 0.276 0.972 0.002 0.028
11 0.278 0.972 0.002 0.028
12 0.284 0.972 0.002 0.029
13 0.305 0.969 0.002 0.031
14 0.412 0.959 0.003 0.042
15 0.417 0.958 0.003 0.042
16 0.419 0.958 0.003 0.043
17 0.424 0.958 0.003 0.043
18 0.427 0.957 0.003 0.043
19 0.434 0.957 0.003 0.044
20 0.437 0.956 0.003 0.044
21 0.450 0.955 0.003 0.046
22 0.467 0.954 0.003 0.048
23 0.478 0.953 0.003 0.049
24 0.484 0.952 0.004 0.049
26 0.487 0.952 0.004 0.050
27 0.499 0.950 0.004 0.051
28 0.528 0.948 0.004 0.054
29 0.534 0.947 0.004 0.054
30 0.551 0.945 0.004 0.056
32 0.559 0.945 0.004 0.057
33 0.566 0.944 0.004 0.058
34 0.577 0.943 0.004 0.059
35 0.592 0.942 0.004 0.060
36 0.596 0.941 0.004 0.061
37 0.604 0.940 0.004 0.061
39 0.624 0.938 0.004 0.064
40 0.641 0.937 0.005 0.065
41 0.650 0.936 0.005 0.066
42 0.668 0.934 0.005 0.068
43 0.683 0.933 0.005 0.069
44 0.688 0.932 0.005 0.070
45 0.703 0.931 0.005 0.072
46 0.714 0.930 0.005 0.073
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48
49
50
51
52
53
54
55
56
57
58
59
61
62
63
64
65
66
67
68
69
70
71
72
73
74
76
78
84
85
89

0.725
0.753
0.771
0.789
0.795
0.802
0.815
0.836
0.881
0.905
0.914
0.942
0.951
1.002
1.045
1.068
1.093
1.132
146
175
191
257
294
315
.364
418
450
491
1.652
1.618
1.976

—_ 4 4 a4 4 4 a4 a4

0.929
0.926
0.925
0.923
0.922
0.922
0.920
0.918
0.914
0.912
0.911
0.909
0.908
0.903
0.899
0.897
0.895
0.891
0.890
0.887
0.886
0.880
0.877
0.875
0.870
0.866
0.863
0.859
0.854
0.848
0.818

0.005
0.005
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.007
0.007
0.007
0.007
0.007
0.008
0.008
0.008
0.009
0.009
0.009
0.009
0.010
0.010
0.010
0.011
0.011
0.012
0.012
0.014
0.015
0.033

0.074
0.077
0.078
0.080
0.081
0.082
0.083
0.085
0.090
0.092
0.093
0.096
0.097
0.102
0.106
0.109
0.111
0.115
0.117
0.120
0.121
0.128
0.132
0.134
0.139
0.144
0.148
0.152
0.158
0.165
0.201
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Table 9.7 shows the ratio of hazard rates for this predictive algorithm that includes all the variables
versus the statistically significant variables. The ratio of hazard rates shows the respective
constants associated with the regression algorithm, as well as the percentage change of each
variable based on one unit of change. If Exp;(B) > 1, the healing time decreases. If Exp;(B) < 1,
healing time increases for that predictor variable, and the healing time increases by that calculated
percentage. Or, Exp;(B) is the ratio of hazard rates that are one unit apart on the predictor

variable.
TABLE 9.6: VARIABLES IN THE EQUATION AND CORRESPONDING STATISTICS
B SE Wald df Sig. Exp(B)
Length_1 -0.433 0.111 15.304 1.000 0.000 0.648
Length_2 -0.359 0.090 15.757 1.000 0.000 0.698
Depth -7.009 0.747 88.083 1.000 0.000 0.001
Undermining 0.327 0.460 0.507 1.000 0.476 1.387
Granulation 0.002 0.002 1.142 1.000 0.285 1.002
Yellow Necrotic -0.003 0.003 1.184 1.000 0.276 0.997
Tissue
Black Necrotic -0.003 0.002 1.483 1.000 0.223 0.997
Tissue
Slough 0.001 0.003 0.191 1.000 0.662 1.001

TABLE 9.7: RATIO OF HAZARD RATES

Variable Constants

B Exp(B) Change (%)
Length 1 -0.433 0.648 35.17
Length 2 -0.359 0.698 30.17
Depth -7.009 0.001 99.91
Granulation 0.327 1.387 -38.72
Undermining 0.002 1.002 -0.22
Yellow necrotic tissue -0.0083 0.997 0.30
Black necrotic tissue -0.0083 0.997 0.27
Slough 0.001 1.001 -0.13
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The second model includes only those predictor variables — Length 1, Length 2, and depth —

that are the most commonly recorded in wound clinics.

We have thus established a predictive model that uses only the most common wound

characteristics given by:

h t) =[h t) *e—0.0439L1—0.336L2—7.418D
(&) = [ho(8)] 0.3

Unlike the previous model, which incorporated the calculated and assumed aspect ratios, this
nonlinear model uses only the most commonly recorded wound characteristics as input variables
in the equation. To establish the validity of using the Cox regression on the data, we analyzed the
ratio of hazard rates that are one unit apart on the predictor [123]. Table 9.8 shows the ratio of
hazard rates for the predictor variables and how they affect the healing time. Table 9.8 provides the
information to determine the percent age of change if that predictor variable is equal to a specific
value.
TABLE 9.8: RATIO OF HAZARD RATES

Variable Constants

Changed
B Exp(B)
(%)
Length 1 -0.439 .644 35.55
Length 2 -0.336 715 28.53
Depth -7.418 .001 99.94

For every unit increase of a predictive variable, the percentage change equates to the effect that
predictor variable has on the remaining healing time. If Exp;(B) > 1, the healing time decreases. If
Exp;(B) < 1, healing time increases for that predictor variable and increases by that calculated
percentage. In other words, for every additional increase of 1 cm. of Length 1, the healing rate
slows, or increases, by 35.55%. Similarly, for Length 2, an increase of 1 cm. results in a 28.53%
increase in healing time. Unlike Length 1 and Length 2, an increase in 1 cm. of depth results in a
nearly 100% increase in healing time. In other words, Length 1 has a greater impact on remaining
healing time and increases healing time more than does Length 2 for every one centimeter.
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TABLE 9.9: COVARIATE MEANS

Mean
Length_1 1.370
Length_2 1.602
Depth 0.162

Table 9.9 shows the covariate means for the model, including only the covariates of Length 1,
Length 2, depth, and granulation. Figure 9.7 shows the survival functional plot of the four
covariates from Table 9.9. Figure 9.8 depicts the cumulative survival estimate after the natural-log
transformation that is applied to the estimate. The log-minus-log plot displays the log-minus-log of
the survival function — that is, In (— In(survival) — versus the survival time. Figure 9.9 shows the
modified baseline cumulative hazard plot with the respective estimated nonlinear function for the
covariates in Table 9.9. Table 9.10 displays the numerical baseline hazard values and the survival

probabilities.
Survival Function at mean of covariates
1.00
0.95-
"
2
g
A 0.907
£
=
v
0.857
0.804
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FIGURE 9.7: SURVIVAL FUNCTION AT MEAN OF COVARIATES
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Figure 9.8 is important for understanding how the categorical predictors respond to the output of
the Cox regression. The log (-log) plot represents a test of the main assumption of Cox regression
and the proportional hazards. The assumption states that the ratio of the hazards should be the

same across time for any two individuals.

LML Function at mean of covariates

-2

Log minus log

-8

1 1 T U I
20 40 60 80 100

REVERSETIME
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FIGURE 9.8: LOG-MINUS-LOG PLOT
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TABLE 9.10: SURVIVAL TABLE

i Baseline At mean of covariates

fime Cumulative Survival SE Cum
0 0.002 1.000 0.000 0.000
3 0.007 0.999 0.000 0.001
4 0.008 0.999 0.000 0.001
5 0.009 0.999 0.000 0.001
6 0.018 0.998 0.000 0.002
7 0.255 0.976 0.002 0.024
8 0.276 0.974 0.002 0.026
9 0.289 0.973 0.002 0.028
10 0.299 0.972 0.002 0.029
11 0.301 0.972 0.002 0.029
12 0.308 0.971 0.002 0.029
13 0.330 0.969 0.002 0.032
14 0.445 0.958 0.003 0.043
15 0.450 0.958 0.003 0.043
16 0.453 0.958 0.003 0.043
17 0.458 0.957 0.003 0.044
18 0.461 0.957 0.003 0.044
19 0.469 0.956 0.003 0.045
20 0.472 0.956 0.003 0.045
21 0.486 0.954 0.003 0.047
22 0.504 0.953 0.003 0.048
23 0.516 0.952 0.003 0.049
24 0.522 0.951 0.004 0.050
26 0.525 0.951 0.004 0.050
27 0.538 0.950 0.004 0.052
28 0.569 0.947 0.004 0.055
29 0.576 0.946 0.004 0.055
30 0.594 0.945 0.004 0.057
32 0.602 0.944 0.004 0.058
33 0.610 0.943 0.004 0.058
34 0.621 0.942 0.004 0.060
35 0.637 0.941 0.004 0.061
36 0.641 0.940 0.004 0.062
37 0.650 0.940 0.004 0.062
39 0.672 0.938 0.005 0.064
40 0.690 0.936 0.005 0.066
41 0.699 0.935 0.005 0.067
42 0.719 0.933 0.005 0.069
43 0.734 0.932 0.005 0.070
44 0.739 0.932 0.005 0.071
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45
46
48
49
50
51
52
53
54
55
56
57
58
59
61
62
63
64
65
66
67
68
69
70
71
72
73
74
76
78
84
85
89

0.756
0.767
0.779
0.809
0.828
0.847
0.854
0.861
0.875
0.897
0.945
0.971
0.980
1.010
1.020
1.074
1.120
1.144
1.171
1.212
1.227
1.259
1.275
1.345
1.385
1.408
1.460
1.518
1.552
1.596
1.660
1.731
2.063

0.930
0.929
0.928
0.925
0.924
0.922
0.921
0.921
0.920
0.918
0.913
0.911
0.910
0.908
0.907
0.902
0.898
0.896
0.894
0.890
0.889
0.886
0.885
0.879
0.876
0.874
0.869
0.865
0.862
0.858
0.853
0.847
0.821

0.005
0.005
0.005
0.005
0.006
0.006
0.006
0.006
0.006
0.006
0.006
0.007
0.007
0.007
0.007
0.007
0.008
0.008
0.008
0.009
0.009
0.009
0.009
0.010
0.010
0.010
0.011
0.011
0.012
0.012
0.013
0.015
0.030

0.072
0.074
0.075
0.078
0.079
0.081
0.082
0.083
0.084
0.086
0.091
0.093
0.094
0.097
0.098
0.103
0.107
0.110
0.112
0.116
0.118
0.121
0.122
0.129
0.133
0.135
0.140
0.146
0.149
0.153
0.159
0.166
0.198
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9.3 NEURAL-NETWORK ANALYSIS

Neural networks enable us to create predictive models that are both accurate and robust. Neural
networks are the most widely used of the predictive modeling methods because they have
consistently been the most reliable. However, the limitation of using neural networks is that they do
not provide the ability to know the black-box algorithm that they create. Instead, we base the
accuracy of the model on statistical measures, such as the number of average errors. We can
control the neural network using input parameters, such as the number of hidden layers, the
number of nodes within those hidden layers, the number of epochs, and the step size of the
gradient descent. With this control, we can produce predictive algorithms that are accurate to
within five days. We can also verify the accuracy of the algorithms using corresponding lift charts,
which assist in measuring the effectiveness of a predictive model. Lift charts use the ratio of the

original data to the predictive data to analyze the accuracy of the overall model.

9.3.1 DATA ANALYSIS FOR DATA WITH ASPECT RATIO OF LESS THAN 1

For the data in this category, we created the corresponding neural network (Figure 9.10), using
Length 1, Length 2, depth, and granulation as inputs, which have been established as the highest
contributing inputs to the output, time to heal. Tables Table 9.11 and Table 9.12 provide the
specifics of the neural network, the number of epochs necessary, and the accuracy of the model.
Similarly, the lift charts (Figure 9.11) provide verification and support for the comparison of the
neural network model’s predictive performance to the baseline model with no predictors.

Figure 9.10 shows the neural network model with the respective weights of the hidden node. We
show this network model to compare the inputs and the weights between the groups of aspect
ratios. The foundation of Figure 9.10 is a multilayer perception neural network.
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FIGURE 9.10: NEURAL-NETWORK MODEL FOR DATA WITH ASPECT RATIO OF LESS THAN 1

Table 9.11 shows the parameters of the neural-network model specific to Group 1, wounds with

an aspect ratio less than 1.

TABLE 9.11: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS, ASPECT RATIO LESS THAN 1

Variables Parameter/Options

Number of input 4 Number of hidden layers 1

variables

Input variables Length 1, Length 2, depth, Number of nodes in Hidden 1
granulation Layer 1

Output variable Time remaining Number of epochs 200

Step size for gradient descent  0.01

Weight-change momentum 0.6
Error tolerance 0.01
Weight decay 0

Table 9.12 shows the training- and validation-data scoring for this network. The network analysis
has returned accurate results with the average error for the training data of +1.61 days. The

validation error is more accurate with +0.20 days of predictive accuracy.
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TABLE 9.12: TRAINING- AND VALIDATION-DATA SCORING REPORT, ASPECT RATIO LESS THAN 1

Training-Data Scoring Validation-Data Scoring

Total sum of RMS error  Average Total sum of squared RMS Average
squared errors error errors error error
129705.47 22.96 1.61 70953.89 26.00 0.20

Figure 9.11 and Figure 9.12 show the lift charts for the validation data set. These lift charts are
based on the fitting from a linear-regression model that includes the time to heal and the set of
predictor variables that describe the wound: Length 1, Length 2, depth, and granulation. The lift

chart shows that the model’s predictive performance is better than the baseline model due to the

higher lift curve.

175

www.manharaa.com




L1ISVLIVA ONINIVE ‘| > YV HLIM Y1V HO< T3AOIN HHOMLIAN-TYENIN WOES LHYHD L1417 1| L'6 35N9Id

aSesane Suisn ONINIVINIY IWIL 3A1RR|NWIND sanjea pa3aipaJd Suisn paJos uaym ONINIVINIY JINIL 3ARRINWND ——

58580 Jo JBqUINN
00¢g 0st (e]074 0SsT 00T 0s

(yesejeq Buiurel] ) yeyD yr

g

wnu?nwn:

0oos

©
N
—

www.manharaa.com




0zl

138 V1V NOILYANVA ‘| VHL SS3140 OILYY 103dSY HLIM V1Y HO4 T3A0N MHOMIIN-TVHNIN WOHL LHVYHD 1H17 g L6 3HNDI

aSesane Suisn ONINIVINIY IWIL 3A1RR|NWIND sanjea pajaipaJd Suisn paios uaym ONINIVINZY IWIL 3ARNWN) —— ‘

58580 Jo JBqUINN
00T 08 038 or (074 0
1 1 1 1 1 o

—

- 00S

- 0ooT

g 8
:nuqnw-;

- 00Sst

- 00s¢€

(1esereq uonepien) HeyD yri

N~
N~
—

www.manharaa.com




9.3.2 DATA ANALYSIS FOR COMBINED DATA OF ASPECT RATIO LESS THAN 1 AND RBMC
DATA

Figure 9.13 shows the neural-network model for the combined data from both Vohra and RMBC.

The purpose of combining the data was to determine whether the origin of the data had an effect

on the neural-network model.

HIDDEN LAYER TRANSFER FUNCTION ACTIVATION FUNCTION OUTPUT

LENGTH 1 167

LENGTH 2 mj‘
- @
GRANULATION L/

=
FIGURE 9.13: NEURAL NETWORK MODEL FOR DATA WITH AR < 1 AND RBMC

INPUT LAYER

-2.45
— Z
-0.10  /

Table 9.13 shows the neural-network parameters for which we established the training and

validation scoring.

TABLE 9.13: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS,
ASPECT RATIO OF LESS THAN 1 AND RBMC

Variables Parameter/Options

Number of input 4 Number of hidden layers 1

variables

Input variables Length 1, Length 2, depth, Number of nodes in Hidden 1
granulation Layer 1

Output variable Time remaining Number of epochs 100

Step size for gradient descent  0.01

Weight-change momentum 0.15
Error tolerance 0.01
Weight decay 0

With an average error of +4.15 days between the theoretical and the actual outputs, the training-

data scoring in this section is slightly less accurate than that of the neural-network in Section 9.31
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However, the validation-data scoring was more precise with an average error of slightly less than
+0.50 days.

TABLE 9.14: TRAINING- AND VALIDATION-DATA SCORING REPORT, ASPECT RATIO LESS THAN 1 AND RBMC

Training-Data Scoring Validation-Data Scoring

Total sum of RMS error  Average Total sum of squared RMS Average
squared errors error errors error error
482383.73 34.13 4.15 178951.28 31.80 0.48

9.3.3 DATA ANALYSIS FOR DATA WITH ASPECT RATIO GREATER THAN 1 AND LESS THAN 2
Similarly, Figure 9.14 shows the neural-network model for Group 2, wounds that have an aspect
ratio greater than 1 and less than 2.

HIDDEN LAYER TRANSFER FUNCTION  ACTIVATION FUNCTION ouTPUT
LENGTH 1
LENGTH 2 \
‘ ‘
GRANULATION 063
-0.34

INPUT LAYER

FIGURE 9.14: NEURAL-NETWORK MODEL FOR DATA WITH ASPECT RATIO GREATER THAN 1 AND LESS THAN 2

Table 9.15 shows the parameters for Group 2’s neural-network model.

179

www.manharaa.com




TABLE 9.15: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS,
ASPECT RATIO GREATER THAN 1 AND LESS THAN 2

Variables Parameter/Options

Number of input 4 Number of hidden layers 1

variables

Input variables Length 1, Length 2, depth, Number of nodes in Hidden 1

granulation Layer 1

Output Variable Time Remaining # Epochs 150
Step size for gradient descent  0.01
Weight change momentum 0.10
Error tolerance 0.01
Weight decay 0

Table 9.16 shows the training- and validation-scoring reports, revealing an average error of +0.14
and +0.53 days, respectively.

TABLE 9.16: TRAINING- AND VALIDATION-DATA SCORING REPORT,
ASPECT RATIO GREATER THAN 1 AND LESS THAN 2

Training-Data Scoring Validation- Data Scoring

Total sum of RMS error  Average Total sum of squared RMS Average
squared errors error errors error error
170397.51 23.91 0.14 74061.73 24.05 0.53

9.3.4 DATA ANALYSIS FOR COMBINED DATA, ASPECT RATIO OF GREATER THAN 1 AND LESS
THAN 2 AND RBMC DATA

Figure 9.15 depicts the neural network for the combined data of Group 2 from Vohra and RBMC.

We used these neural network visualizations to compare how the combination of data from

different origins affects the neural-network analysis. As this chapter shows, best-fit neural-network

parameters have one hidden layer, one hidden node, and varying numbers of epochs and weight-

change momentums.
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FIGURE 9.15: NEURAL NETWORK MODEL FOR DATA WITH 1< ASPECT RATIO < 2 AND RBMC

INPUT LAYER
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Table 9.17 shows the neural-network parameters for the neural network in Figure 9.15.

TABLE 9.17: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS,
ASPECT RATIO GREATER THAN 1 AND LESS THAN 2 AND RBMC

Variables Parameter/Options

Number of input 4 Number of hidden layers 1

variables

Input variables Length 1, Length 2, depth, Number of nodes in Hidden 1
granulation Layer 1

Output variable Time remaining Number of epochs 100

Step size for gradient descent  0.01

Weight-change momentum 0.05
Error tolerance 0.01
Weight decay 0

Table 9.18 states the accuracy of this neural network’s training- and validation-data scoring
results. For this neural network, the training data scored an average error of +1.69 days, whereas

the validation data scored +0.77 days.

TABLE 9.18: TRAINING- AND VALIDATION-DATA SCORING REPORT,
ASPECT RATIO GREATER THAN 1 AND LESS THAN 2 AND RBMC

Training-Data Scoring I Validation-Data Scoring

Total sum of RMS error  Average I Total sum of squared RMS Average
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squared errors error errors Error Error

505659.23 32.94 1.69 209347.23 32.35 0.77

These results bode well for this model’s ability to predict an accurate time to heal given a reliable
set of patient-demographic and wound-characteristic inputs.

9.3.5 DATA ANALYSIS FOR DATA WITH ASPECT RATIO GREATER THAN 2
Figure 9.16 presents the final neural-network model. To develop an accurate model for wounds
with an aspect ratio greater than 2, the model needed more hidden nodes within its hidden-layer
structure. Increasing the number of hidden nodes makes the neural network more complex than
the previous models (Figure 9.16). Table 9.19 and Table 9.20 provide the interlayer connection
weights for both the input and the output layers of this neural-network model.
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FIGURE 9.16: NEURAL-NETWORK MODEL FOR DATA WITH ASPECT RATIO 1 AND RBMC
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TABLE 9.19: NEURAL-NETWORK PREDICTION, INTERLAYER CONNECTION WEIGHTS

Input Layer
Hidden Layer 1 Length 1 Length 2 Depth Granulation Bias Node
Node 1 -1.03 -0.62 -0.21 -0.46 0.06
Node 2 -0.89 0.67 -0.10 0.74 0.30
Node 3 0.79 -1.12 -0.37 -0.43 0.37
Node 4 -0.34 0.85 0.62 0.53 0.00
Node 5 -0.20 0.97 0.40 -0.83 0.21
Node 6 0.30 0.14 -0.25 -0.72 0.74
Node 7 -0.67 0.31 0.1 0.70 -0.81
Node 8 0.08 -0.91 -0.60 -0.58 -1.09
Node 9 -0.69 -0.39 -1.05 -0.76 -0.14
Node 10 0.55 -0.37 0.28 -0.70 -0.77
Node 11 -0.57 -0.89 0.16 -0.57 0.43
Node 12 0.21 0.73 -0.05 0.79 0.58
Node 13 0.16 -0.49 0.22 0.38 -0.12
Node 14 -0.97 0.82 -0.55 -0.14 -0.25
Node 15 0.28 1.06 -0.26 -1.04 -0.77
Node 16 0.92 -0.86 -0.68 0.16 0.22
Node 17 0.06 -0.32 -0.50 0.92 0.22
Node 18 -0.93 -0.70 -0.57 -0.19 0.66
Node 19 0.65 0.70 -0.55 -0.10 -0.38
Node 20 -0.27 -0.66 -0.30 -0.32 0.43
Node 21 0.31 -0.77 -0.29 -0.38 -0.47
Node 22 0.82 -0.61 0.39 0.44 -0.28
Node 23 0.05 -0.22 0.49 -0.42 -0.02
Node 24 0.07 -0.56 -0.67 0.81 -0.07
Node 25 -1.01 -0.04 0.15 0.27 -1.00
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TABLE 9.20: NEURAL-NETWORK PREDICTION, OUTPUT-LAYER CONNECTION WEIGHTS

Hidden Layer 1 Output

Node 1 -0.21
Node 2 0.01
Node 3 0.73
Node 4 0.00
Node 5 -0.92
Node 6 0.21
Node 7 0.46
Node 8 -0.45
Node 9 0.83
Node 10 0.29
Node 11 0.19
Node 12 -0.29
Node 13 0.33
Node 14 0.03
Node 15 -0.81
Node 16 0.19
Node 17 0.47
Node 18 0.01
Node 19 0.16
Node 20 -0.34
Node 21 -0.09
Node 22 -0.24
Node 23 -0.27
Node 24 0.25
Node 25 -0.68
Bias Node -0.40

Table 9.21 the neural network parameters, revealing 25 nodes within the hidden layer. However,

unlike the previous models, the network experienced only 10 epochs, or iterations.
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TABLE 9.21: NEURAL NETWORK PREDICTION VARIABLES AND PARAMETERS, ASPECT RATIO GREATER THAN 2

Variables Parameter/Options

Number of input 4 Number of hidden layers 1

variables

Input variables Length 1, Length 2, depth, Number of nodes in Hidden 25
granulation Layer 1

Output variable Time remaining Number of epochs 10

Step size for gradient descent  0.01

Weight-change momentum 1
Error tolerance 0.01
Weight decay 0

Table 9.22 shows the training- and validation-data scoring. Unlike the previous models, the best
average error for Group 3 of chronic wounds was +£5.69 days for training data and +4.02 days for
validation data. This figure, on average, was a larger error than that of any of the previous neural-
network models. We have hypothesized the primary reason behind this discrepancy is that the
larger the aspect ratio, the more obscure the shape of the wound. This obscurity could result in

nonuniform healing.

TABLE 9.22: TRAINING- AND VALIDATION DATA-SCORING REPORT, ASPECT RATIO GREATER THAN 2

Training-Data Scoring Validation-Data Scoring

Total sum of RMS error  Average Total sum of squared RMS Average
squared errors error errors error error
29086.64 22.39 -5.69 21056.33 29.02 4.02

9.3.6 DATA ANALYSIS FOR COMBINED DATA WITH ASPECT RATIO GREATER THAN 2,
RBMC DATA
Figure 9.17 depicts the final neural-network model. This model combines analysis of wounds with

an aspect ratio greater than 2 and wound data from RBMC.
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FIGURE 9.17: NEURAL-NETWORK MODEL FOR DATA WITH ASPECT RATIO GREATER THAN 2, RBMC

INPUT LAYER

IR

Table 9.23 provides the parameters for the final neural-network model.

TABLE 9.23: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS,
ASPECT RATIO GREATER THAN 2, RBMC

Variables Parameter/Options

Number of input variables 4 Number of hidden layers 1

Input variables Length 1, Length 2, Number of nodes in Hidden 1
depth, granulation Layer 1

Output variable Time remaining Number of epochs 145

Step size for gradient descent  0.01

Weight-change momentum 0.25
Error tolerance 0.01
Weight decay 0

Table 9.24 shows the training- and validation-data scoring, with an average error of +3.80 and

+2.25 days, respectively.

TABLE 9.24: TRAINING- AND VALIDATION-DATA SCORING REPORT, ASPECT RATIO GREATER THAN 2, RBMC

Training-Data Scoring Validation-Data Scoring

Total sum of squared  RMS error Average error i Total sum of squared RMS error Average error
errors errors

321371.83 37.71 3.80 130663.77 36.70 -2.25
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9.4 VALIDATION

To validate the accuracy of the models and methodology, we tested the models against respective
data. From the neural-network models, we learned that it is possible to relatively accurately predict
a time to heal. Within the context of the data and chronic-wound situation, the difference for these

patients’ time remaining to wound closure was insignificant, ranging from five to 10 days.

9.4.1 NONLINEAR REGRESSION: COX REGRESSION
The hazard function is a measure of the potential for the event to occur at a particular time, t,
provided that the event did not occur yet. The greater the hazard function, the greater the potential
and probability for the event to occur — in this case, for the wound to heal [98, 123]. A set of
assumptions is made for each predictive-modeling technique. For the Cox proportional-hazards
regression model, those assumptions include [99]:

* Independence of survival times among wounds within the data sample,

* A multiplicative, or nonlinear, relationship between the covariates and predictors and the

hazard, and

¢ A calculated baseline hazard function at time t.

The Cox model is agnostic as the functional form of the baseline function. Cox regression in itself is
inherently both semiparametric and nonparametric. It is semiparametric because hy(t) is
nonparametric. However, because h(t) is parametric, we specify an exponential shape, which is a
mathematical consequence of assuming a proportional hazard over time. Theoretically, we expect
a wound to start large and become smaller as time progresses. Although we theorized an
exponential decline of the data over time, the baseline hazard function could have easily taken
other graphical shapes. Unless we centered the data on the mean, or set it to zero, the baseline
hazard graph simply shows the hazard rate when the predictors are at their mean level [99].

The survival function is the ratio of the hazard function and the baseline hazard function as given
by:

h(®) _ _—0.0439L1-0.336L2—7.418D
= e 9.4)
ho(t)

The baseline survival function was determined as a function of the baseline hazard function:

So(t) = e Ho® 9.5)

188

www.manharaa.com




The survival function as a constant power of the baseline survival function is given by:

—0.0439L1-0.336L2—7.418D
¢ 9.6)

Si(8) = [So(D)]

The corresponding survival function for Wound 4917 (Figure 9.18) at the probability that survival is

equal to zero is given by:

S;(t) = 0.0002x% — 0.031x + 1.0751 @ S;(t) = 0 9.7)

The approximate time to wound closure for Wound 4917 is 103 days.

The Cox proportional hazard model outputs a ratio rather than a time to heal. Therefore, to validate
the use of this model, we calculated an alternative output as a function of the Cox proportional
hazard. Thus, we verified the effectiveness of the model through the survival function, a function of
the proportional hazard function. The survival function captures the probability that the wound will
survive beyond time t. Through alternative calculations, we calculated the survival function of
randomly selected wounds to determine whether the probability that the wound would survive
corresponded with the actual recorded time of the patient visit. Figure 9.18 provides a visual

example of the probability that this wound will survive until time t.

Each person’s ability to heal a wound is unique. Therefore, it is nearly impossible to create a
universal model to predict wound healing. However, with enough of a patient’s retrospective data,
demographics, and wound characteristics, we can develop a customized predictive model for that
patient’s wound. Figure 9.18 provides an example of a single wound’s trajectory based on the Cox
regression survival function. Using the approximated quadratic equation in Figure 9.18, we

estimated that Wound 3381 would heal in approximately 62 days. The actual wound closure

occurred in 56 days.
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Similarly, in Figure 9.19, we show an example of three wounds and their respective survival
function outputs. Unlike the outputs in Figure 9.18, more erratic behavior occurs with regard to
curve fitting and shape within the survival functions that incorporate all the variables. More
predictor variables appear to create more complex analysis to determine whether the wound

survives until a specific time, t.

9.4.2 NEURAL NETWORKS

We developed a series of steps that supported the most robust algorithm we could design. We
used correlation matrices and variable selection mechanisms to statistically determine the
applicable predictor variables. To verify the validity of the neural network, we rely on the error of
both the training and the validation data. We rely more on the feedback of the validation data in an
attempt to not “overfit” the model to the training data. Table 9.25 provides a summary of the
training and validation scoring from the original data, classified only by aspect ratio. Table 9.25
represents the data from Vohra.

TABLE 9.25: SUMMARY OF TRAINING- AND VALIDATION-DATA SCORING REPORT

Aspect Ratio 1

Training-Data Scoring Validation-Data Scoring

Total sum of RMS error  Average Total sum of squared RMS Average
squared errors error errors error error
129705.47 22.96 1.61 70953.89 26.00 0.20
Aspect Ratio 2

Training-Data Scoring Validation-Data Scoring

Total sum of RMS error  Average Total sum of squared RMS Average
squared errors error errors error error
170397.51 23.91 0.14 74061.73 24.05 0.53
Aspect Ratio 3:

Training-Data Scoring Validation-Data Scoring

Total sum of RMS error  Average Total sum of squared RMS Average
squared errors error errors Error error
29086.64 22.39 -5.69 21056.33 29.02 4.02

Table 9.26 categorizes the training and validation scoring reports by the data’s original aspect ratio
with the data from RBMC. To validate the methodology, we first looked at the training data. The
training data’s statistics reflect the fit of the network on 70% of the data. In this case, the training
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error averages 3.21 days between the three classifications. Furthermore, the networks average
better return on the validation data —approximately 30% of the original data with an average data

of 0.56 days within the predicted value. All the validation-scoring reports show that the neural
network is an accurate predictive modeling for the validation data.

TABLE 9.26: SUMMARY OF TRAINING- AND VALIDATION-DATA SCORING REPORT

Aspect Ratio 1

Training-Data Scoring Validation-Data Scoring

Total sum of RMS error  Average Total sum of squared RMS Average
squared errors error errors error error
482383.73 34.13 4.15 178951.28 31.80 0.48
Aspect Ratio 2:

Training-Data Scoring Validation Data Scoring

Total sum of RMS error  Average Total sum of squared RMS Average
squared errors error errors error error
505659.23 32.94 1.69 209347.23 32.35 0.77
Aspect Ratio 3

Training-Data Scoring Validation=Data Scoring

Total sum of RMS error  Average Total sum of squared RMS Average
squared errors error errors error error
321371.83 37.71 3.80 178951.28 31.80 0.48

RMS error within a neural-network analysis measures the difference between the predicted values
by the model and the actual observed values. The RMS error is computed on the validation data.
Because RMS error is difference between actual and predictive model values, the ideal RMS
values should be small. The returned RMS error in Table 9.26 represents an average RMS error of
31.98, or approximately 32, days, a roughly four-week tolerance. Four weeks may seem like a long
time for a wound to heal. However, it seems insignificant to those with chronic wounds that have

lasted six to eight months.

We compared the predicted value to the actual value from the neural network analysis. Table 9.27
provides a sample of the validation scoring that occurs as part of the neural-network analysis. We
notice that the percentage error ranges rom 2.55% to 431% in this sample data. This range
correlates to a difference range of two days to 12 weeks. The statistics in Table 9.25 and the large

sum of the squared errors from the network analysis reinforce this feedback.
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TABLE 9.27: SAMPLE VALIDATION SCORE

Predicted Actual Percentage Difference
Residual Length 1 Length 2  Depth Granulation

Value Value Error (Weeks)
40.64 98 57.356888 3.8 2.4 0.2 100 58.53 8.19
40.64 91 50.356888 3.8 2.4 0.2 100 55.34 719
49.38 21 -28.382882 4 2.7 0.3 100 135.16 -4.05
39.42 14 -25.420974 3.5 2 0.2 100 181.58 -3.63
75.96 56 -19.961683 5 3.8 0.5 100 35.65 -2.85
64.61 63 -1.605641 5 3.8 0.4 100 2.55 -0.23
27.00 117 90.004332 0.8 1 0.1 0 76.93 12.86
30.43 54 23.571859 0.6 1.2 0.2 0 43.65 3.37
30.10 40 9.901263 0.5 1 0.2 0 24.75 1.41
30.24 33 2.760344 0.8 1 0.2 0 8.36 0.39
26.56 5 -21.558464 0.4 0.7 0.1 0 431.17 -3.08
24.91 21 -3.908657 1.9 1 0 0 18.61 -0.56
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CHAPTER 10

Model Validation and Verification

RBMC provided us with the opportunity to observe and collect original patient data. Ideally, the
preference was the development of a universal algorithmic model to accommodate all wound
clinics. However, with further insight and understanding of factors that contribute to day-to-day
wound care, that task was not feasible with the current data set. This chapter discusses and
verifies the methodology that we created and established from the data of Vohra and applies it to
data collected from RBMC.

10.1 OVERVIEW

We used the data from RBMC to cross-validate the methodology on a new and unrelated set of
data. This step allowed us to test the methods on an independent data sample and determine the
validity of the processes and methodologies. Because we collected a smaller amount of data from
RBMC than from Vohra, we were able to observe, converse, and record the necessary

measurements through patient interaction and patient transcripts.

From the data summarized Figure 10.1, we determined the ideal wound-healing measurements
and characteristics in Table 10.1. Table 10.1 shows the threshold of each variable. The

combination of the independent variables shows when we consider the wound to be healed.
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(D) VOLUME

FIGURE 10.1: Box PLOTS FOR RBMC DATA

TABLE 10.1: LOWER AND UPPER WHISKERS OF BOX PLOTS FOR RBMC DATA

Independent Variable Lower Quartile Upper Quartile

Length 1
Length 2

Granulation tissue

0.40

0.30

0.10
0

0.90
1
0.20
100
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10.2 DATA COLLECTION

The data from RBMC was collected over multiple weeks. Similar to what occurs in other wound
clinics, most RBMC patients have weekly or biweekly visits to care for their wounds. Although, the
facility is extremely knowledgeable about how to efficiently treat wounds, staff may have difficulty in
understanding patients’ lifestyles. Nutrition plays a significant role in wound healing, and it is one of
the most difficult factors to observe. Table 10.2 shows an example of a patient’s wound that took
117 days to heal. Because these are chronic wounds, one of the assumptions for this study is that
the first visit to a wound care clinic is time = 0, regardless of the length of time patients have had

their wounds before their first appointments.
By performing similar analysis on the data from RBMC, the expected healing pattern for our
validation data deviated little from the analysis results of the training data. Figure 10.2 through

Figure 10.5 show the behavior of variables length 1, length 2, depth, and volume over time.

TABLE 10.2: SAMPLE PATIENT DATA

Time to
Wound ID Heal Length 1 Length 2 Depth Volume Black Necrotic

20002 117 0.8 1 0.1 0.08 0

20002 96 0.8 0.7 0.1 0.056 100
20002 89 0.6 1 0.2 0.12 100
20002 82 0.6 0.8 0.2 0.096 100
20002 68 0.6 0.8 0.2 0.096 100
20002 61 0.6 1.4 0.2 0.168 100
20002 54 0.6 1.2 0.2 0.144 100
20002 47 0.5 1 0.2 0.1 100
20002 40 0.5 1 0.2 0.1 100
20002 33 0.8 1 0.2 0.16 100
20002 26 0.5 1.2 0.2 0.12 100
20002 19 0.5 1.2 0.2 0.12 100
20002 5 0.4 0.7 0.1 0.028 100
20002 0 0 0 0 0 100
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10.3 THREE-DIMENSIONAL SURFACE PLOTS

Three-dimensional surface plots help demonstrate the behavior and relationship among three
variables and to determine the location of a combination of variables based on density and
population. For this analysis, three-dimensional surface plots permit us to visually represent three
variables of data and the relationships between them. For example, Figure 10.6 through Figure
10.8 display the relationship between Length 1 and Length 2 with time to heal. Figure 10.6 shows
the relationship among the variables with the fit of a quadratic curve, and Figure 10.8 represents a

linear relationship.

Surface plots and the combination of variables determine any patterns or similarities between the
respective combinations. Table 10.3 shows the combination of variables per each group of surface

plots.

TABLE 10.3: VARIABLE COMBINATIONS OF SURFACE PLOTS

Combination Variables Figures

1 Time to heal versus Length 1 and Figure 10.6, 10.7, 10.8
Length 2
2 Depth versus Length 1 and Length 2

10.3.1.1.1 10.9,10.10, 10,11

3 Time to heal versus Length 2 and 10.12, 10.13, 10.14
depth

Depth versus Length 2 and depth
10.3.1.1.2 10.15, 10.16. 10.17
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3D Surface Plot of TIME TO HEAL against LENGTH 1 and LENGTH 2
TIME TO HEAL = 25.3464+163.5587*x-121.2812%y-78.6008"x"x+21.6706"x™y+77.2009"y*y

e OL R

I > 150
B < 110
B <60
B < 10
B < -40
B < -90
Bl <-140

3D Surface Plot of TIME TO HEAL against LENGTH 1 and LENGTH 2
TIME TO HEAL = 25.3464+163.5587*x-121.2812%y-78.6008*x*x+21.6706*x"y+77.2009%y*y

WK OL I

B = 150
B < 110
B <60
B < 10
B < -40
Il < -50
B <-140

FIGURE 10.6: SURFACE PLOT: TIME TO HEAL AGAINST LENGTH 1, LENGTH 2 (QUADRATIC FIT)
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3D Surface Plot of DEPTH against LENGTH 1 and LENGTH 2
DEPTH = 0.0639+0.1132*x+0.0737*y-0.0112"x"x-0.1383*x™y+0.0553"y*y

04

Bl <0325
Bl < 0.225
= <0.125
B < 0.025
Bl <0075

B0

<0325
<0225
I < 0.125
B < 0.025
<0075

FIGURE 10.9: SURFACE PLOT: TIME TO HEAL AGAINST LENGTH 1, LENGTH 2 (QUADRATIC FIT)
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10.4 VALIDATING PREDICTIVE MODELS AND THE METHODOLOGY

10.4.1 MULTIPLE LINEAR-REGRESSION MODEL, RBMC
The multiple linear-regression models also showed predictive capabilities. Although the expectation
for accuracy was greater for the neural-network model, the linear-regression model produced

better predictive capabilities, resulting in approximately +£5.55-day accuracy.

TABLE 10.4: MULTIPLE LINEAR-REGRESSION MODEL VARIABLES, RBMC DATA

Variables

Number of input 5

variables

Input Variables Length 1, Length 2, depth, granulation, black necrotic
tissue

Output variable Time remaining

TABLE 10.5: MULTIPLE LINEAR-REGRESSION MODEL PARAMETERS, RBMC DATA

Regression Model

Input variables Coefficient Standard Error p-value SS
Constant term -26.15 13.67 0.06 155107.69
Length 1 2.46 12.83 0.85 839.47
Length 2 52.12 19.34 0.01 3744.70
Depth 264.32 74.42 0.00 35630.03
Granulation 0.48 0.13 0.00 31331.90
Black necrotic tissue -0.26 0.16 0.1 3488.11

The regression-model statistics include the degrees of freedom, standard deviation, and R? (Table

10.6). These statistics represent characteristics about this linear-regression model.

TABLE 10.6: MULTIPLE LINEAR-REGRESSION MODEL PARAMETERS, RBMC DATA

Input variables Coefficient
Residual DF 46

R? 0.56
Standard deviation 36.14
estimate

Residual SS 60082.11
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The corresponding data in Table 10.5 establishes the linear-regression predictive model
(Equation(10.1)). This model produces an RMS error of 44.47 days and an average error of
approximately +5.55 days (Table 10.7).

Time to Heal = 2.46(L1) + 52.12(L2) + 264.32(D) + 0.48(G) — 0.26(BN) — 26.15 (10.1)

TABLE 10.7: TRAINING AND VALIDATION DATA SCORING REPORT FOR RBMC DATA

Training-Data Scoring Validation-Data Scoring

Total sum of RMS error  Average Total sum of squared RMS Average
squared errors error errors error error
60082.11 33.99 0.00 43497.94 44 .47 -5.55
10.4.2 NONLINEAR REGRESSION: COX PROPORTIONAL HAZARDS MODEL

The Cox Proportional hazard model assumes that enough data exists to train a regression model
and have it understand the difference between a healed and an unhealed wound. With the data
from RBMC, there is insufficient wound range for the model to understand and recognize what a
healed-wound model. As a result, the survival function has a different shape from the curve using
the feedback from the Vohra data (Figure 10.18).

Equation (10.2) describes the hazard function equation for the RBMC data. This function, similar to
the analysis in Section 9.2, allows the calculation of the survival function to determine the individual
wound-trajectory algorithms.

h(t) — [ho(t)] * e0.037L1—0.0862—8.142D (102)

Table 10.8 and Table 10.9 provide the summary statistics of the ratio of hazard rates and the

percentage change that equates to one unit of change per predictor variable.
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TABLE 10.8: RATIO OF HAZARD RATES

Variable Constants

Changed
B Exp(B)
(%)
Length 1 0.037 1.037 3.70
Length 2 -0.086 0.918 8.20
Depth -8.142 0.000 0.00

TABLE 10.9: COVARIATE MEANS

Mean
Length_1 3.632
Length_2 2.468
Depth 0.20

We lack sufficient data on healed wounds to accurately use the survival-function plot of the mean

of the covariates to predict when a wound would heal.
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Similar to plots in Section 9.2, Figure 10.22 is a plot of three example wounds and their projected
survival time. As model verification, we plotted the survival versus time for each wound. This plot
allows us to approximate a regression equation for that wound and the time at which survival will
equal zero. Figure 10.23 provides the graphical representation of the survival-function probability
for one wound. We included this plot because it was the longest tracked wound that we have
documented. Figure 10.23 shows the complexity of wound healing. Additionally, it represents
typical and somewhat erratic behavior of wound healing and how factors can influence the healing
time of a chronic wound. In many cases, wounds must become larger before they get smaller,
which seems counterintuitive. Yet it emphasizes the complexity of the human body and the healing

process.

We verified the methodology through the calculated numerical value of the survival function. The
resulting outputs led each wound to have a set of survival-function outputs that correspond to their
respective time, t. The data from Figure 10.22 shows how we arrived at the respective calculations
and, ultimately, the regression equation.

Equation (10.3) expresses the ratio of the hazard function at time t to the baseline hazard function
or the mean of the covariates. This ratio allows us to understand how a wound at time t changes
compared with the hazard function when all predictive covariates are equal to zero.

h(t
® — ~3451L1—1508L2-1.299D (10.3)
ho(t)

The baseline survival function was determined as a function of the baseline hazard function:

So(t) = e Ho® (10.4)
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The survival function as a constant power of the baseline survival function is given by:

]e—3.4—51L1—1.508L2—1.299D

Si(6) = [So(6) (10.5)
Table 10.10 documents the wound plotted in Figure 10.23 with the respective numerical values of
the variables in equations 10.3, 10.4, and 10.5. Figure 10.23 is a plot of the survival function
versus time in Table 8.6 versus Time (Column 2 in Table 10.10). Equation (10.6) yields the

approximate regression equation for the best-fit line in Figure 10.23:
S;(t) = (=3E —07)x3 + 0.0001x? — 0.0153x + 1.1346 @ S;(t) = 0 (10.6)

Solving Equation (10.6) at S;(t) = 0 produces three roots. The only positive root is the wound’s
approximate healing day. The root of the equation represents the number of days since the wound
was conceived at t = 0. For this patient’s wound, the approximate day of healing is the 163" day
since the patient first visited a wound clinic. This calculation results in approximately a 17% error,

or approximately four weeks.

(estimate — actual) 163 —196
Error = = = —.1684 » —16.84% (10.7)
actual 196

Although we would have preferred a smaller error, a tolerance of four weeks for a wound to heal is
an adequate tolerance for an individual that would have had a wound for nearly six months. A

number of factors contribute to wound healing, many of which only the patient can control.

226

www.manharaa.com




TABLE 10.10: WOUND DATA THAT CORRESPONDS TO PLOT IN FIGURE 10.23

Ratio of
Wound Time Healed or Baseline Hazard Survival
Hazard Exponent Function to
Number (Days) Unhealed . ) Function

Function Baseline

Hazard
20019 0 0 0.01 0.001 0.074 1.000
20019 7 0 0.01 0.003 0.329 0.997
20019 14 0 0.01 0.003 0.329 0.997
20019 21 0 0.01 0.003 0.329 0.995
20019 28 0 0.01 0.012 1.279 0.978
20019 35 0 0.10 0.003 0.027 0.993
20019 42 0 0.22 0.147 0.667 0.601
20019 49 0 0.49 0.286 0.580 0.265
20019 56 0 0.86 0.086 0.100 0.615
20019 63 0 0.86 0.286 0.334 0.156
20019 70 0 0.86 0.174 0.204 0.276
20019 7 0 0.86 0.056 0.065 0.614
20019 84 0 0.86 0.053 0.062 0.538
20019 91 0 1.12 0.053 0.047 0.447
20019 98 0 1.12 0.038 0.034 0.566
20019 105 0 1.12 0.046 0.041 0.501
20019 112 0 1.12 0.014 0.012 0.810
20019 119 0 1.46 0.102 0.069 0.215
20019 126 0 1.46 0.143 0.098 0.114
20019 133 0 1.46 0.143 0.098 0.114
20019 140 0 1.46 0.116 0.079 0.174
20019 147 0 1.46 0.086 0.058 0.274
20019 154 0 1.46 0.086 0.058 0.274
20019 161 0 1.46 0.086 0.058 0.274
20019 168 0 1.46 0.097 0.067 0.229
20019 175 0 1.46 0.113 0.077 0.180
20019 182 1 2.19 0.226 0.103 0.033
20019 189 1 3.08 0.263 0.085 0.019
20019 196 1 3.08 1.000 0.325 0.000
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10.4.3 NEURAL-NETWORK MODEL BASED ON DATA FROM RBMC

For this study, we analyzed 22 unique wounds with 240 documented visits. Because the model is
a time-varying analysis, each wound had a minimum of five recorded clinic visits. For the data, the
neural-network model that fits this data has an average validation-scoring error of £1.40 days,
indicating that the model had accurate predictive capabilities. However, the RMS error was
relatively high indicating that the data does not follow a specific pattern. A similarly high standard
deviation of 53.12 days for the original output also results in a high RMS error. We attribute the
high standard deviation and RMS to human inconsistencies that naturally occur in wound

measurement. Table 10.11 shows these neural-network model parameters.

TABLE 10.11: NEURAL-NETWORK PREDICTION VARIABLES AND PARAMETERS, RBMC DATA

Variables Parameter/Options
Number of input 4 Number of hidden layers 1
variables
Input variables Length 1, Length 2, depth, # Nodes in HiddenlLayer-1 1
granulation, black necrotic
tissue
Output variable Time remaining Number of epochs 30

Step size for gradient descent  0.01

Weight-change momentum 0.6
Error tolerance 0.01
Weight decay 0

Table 10.12 shows the training- and validation-data scoring report. The average error for this
model is £0.618 and +£1.40 days for the training- and validation-data scoring, respectively.
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TABLE 10.12: TRAINING- AND VALIDATION-DATA SCORING REPORT FOR RBMC DATA

Training-Data Scoring Validation-Data Scoring

Total sum of RMS error  Average Total sum of squared RMS Average
squared errors error errors error error
70405.461 36.796 -0.6177 46119.47495 45.786  1.4025

The study at RBMC validates the methodology for developing a model for the prediction of wound
healing. Through the verification and validation, we found that it is difficult to develop one
algorithmic model for all wound clinics due to the extensive number of factors that contribute to
wound healing. Chapter 11 will further discuss this topic.
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CHAPTER 11

Analysis of Wound Computational Models

The ability to predict when chronic wounds heal is a challenging task. Many chronic wounds
become chronic because of a number of uncontrollable factors. Factors that influence the length of
time to heal include age, weight, family history, nutrition, and compliance of the patient. Physicians
cannot control many — if any — of these factors. With that understanding, the objective is to find
the best course of treatment to efficiently heal and close the wound. Wound clinics differ greatly

from each, providing an eye-opening experience on the quality of patient care.

11.1 IMPLICATIONS

The purpose of this research and study was to design and develop predictive models to estimate
the time to heal for chronic wounds. Our research hypothesized that a predictive model and
algorithm could be accurate and robust, provided that the predictor variables were independent of
each other. This dissertation resulted in four distinct contributions: 1) Methodologies to design,
develop, and implement predictive models to estimate chronic wound healing; 2) Linear, nonlinear,
and neural network predictive algorithms to estimate time to heal for chronic wounds; 3) Using
CAD to create a three-dimensional model of a patient’s wound to better calculate surface area and
volume; and 4) Routine chronic wound management from an engineering perspective for wound-

care clinics.

The methodology was created to develop more effective processes to track, monitor, and predict
time to heal for chronic, nonhealing wounds. The overall methodology in Figure 7.1 shows the
inconsistencies and limitations of current predictive methods for chronic wounds. What has since
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materialized from the original hypothesis were smaller, parallel subprocesses that could assist in

chronic wound-care tracking and predictive capabilities.

Subprocesses include better understanding the limitations of the technology infrastructure, better
integration and more consistent incorporation of digital imaging, and the ability to use mathematical
algorithms to assist in approximating the time to wound closure. We further focused on how to

understand, clean, and use large data sets to develop robust and accurate predictive algorithms.

To reach the stage of algorithm development, the raw data of wounds had to be unidentified and
cleaned. Vohra’'s EMR system unidentified data before this study began, but we had to develop a
coding and patient unidentification process for the data set from RBMC. With thousands of wound
measurements, we developed mini processes and coding structures to ensure the quality and
thoroughness of the data (Figure 8.3 and Figure 8.4). The mini code explorations allowed us to
better understand the data for statistical exploration. Additionally, we developed processes and
coding structures (Figure 8.11) to properly analyze the surface areas of wounds. Image analysis
and boundary-detection algorithms provided a more realistic analysis and measurement of wounds
than human measurement. Image integration in wound clinics with the right image-analysis
software can also provide a more accurate measurement in the percentage change from week to
week for chronic wounds than human measurement can provide. The processes and methods in
the clinics must be efficient, more routine, and better standardized in their wound-photography

practices.

Before the visits to these wound clinics, we assumed that the incorporation of tools such as digital
camera would be an easy adaptation. However, no modification proved easy. Clinics provide a
specific amount of time to each patient, have a limited number of nurses, and have technology
restrictions. Many of these clinics must focus on efficiency and patient care rather than wound
photography. Unfortunately, there appears to be a discrepancy with regard to the value of properly

performed wound photography and its contribution to patient and wound information.

From an engineering and processes perspective, those wound clinics that incorporated
photographs in the patient record lacked the proper tools and procedures to correctly integrate
photos with patient wound tracking. A major issue with wound photographs is how to centralize
patients’ photographs and EMRs. When hospitals began to migrate from paper records to
electronic medical records, most hospitals used one EMR system for every department.

Unfortunately, one EMR system does not meet the needs of all departments, including wound-care
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departments. For example, wound-care clinics must record dimensions and qualitative visual
information about the wound. Descriptive analyses about the wound’s color, density, and bacteria
provide insight into the health of both the wound and the patient.

Further, clinicians measure the progress of wounds, especially chronic wounds, by their size and
change in size from week to week. For example, the size of a wound from week could decrease by
as little as 0.25 cm. However, anyone measuring the wound could come up with a slightly different
measurement; staff members in wound clinics have their own methods of measuring wounds.
Thus, digital image processing and analysis become more important. However, a lack of
consistency exists in wound photography. Photography issues include blurriness, external flash,
lack of a ruler, or even a skewed perspective (Figure 11.1). Clinics can nevertheless correct these
issues by providing staff members with proper training. A more serious issue, however, is that
wound clinics lack wound-care statistics in their EMR systems and thus cannot connect wound
photographs with patient records. This problem in turn makes it difficult for clinicians compare,
monitor, and analyze changes in the wound, such as size and color, over weeks or months. These

inefficiencies have led wound photography to be a hindrance rather than a help.

One of the goals of this research was to properly determine the appropriate wound parameters
and characteristics for predicting the time to heal for chronic wounds. Each wound clinic we visited
contributed different insights on standard practice and patient care. Through site observation, we
gained knowledge about what clinics require, how they report wounds conditions, and how many
moving components contribute to how they treat nonhealing wounds. Two of the four clinic sites,
Tufts and Morganti, enabled us to become familiar with wound-care clinic practice. We used the
other two sites, RBMC and Vohra, for both content knowledge and physical data collection and

acquisition.
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(a) Blurry (b) Flash (c) No Ruler (d) Perspective

FIGURE 11.1: VARIOUS IMAGING ISSUES

We conceived this research under the assumption that the inputs to the algorithm would include a
variety of inputs ranging from patient demographics to wound characteristics to patient health
history. Unfortunately, that assumption proved incorrect. Instead, we received most of the data
from the Vohra clinic rather than the hospitals. Unlike the hospitals, Vohra has its own proprietary
wound-tracking database that allowed clinicians to document patient progress through a
customized EMR system. With this tool, clinicians could sort, filter, and organize patient data
based on the requirements for wound characteristics. As a result, we were able to obtain data for
thousands of patients and thousands of wounds. Through multiple discussions and analysis,
physicians at Vohra assisted us in determining the proper wound data based on their experience

and clinician expertise.

The ability of people to acquire patient data from medical facilities has given rise to a number of
patient privacy laws. This limitation worked against us in the collection of data. Vohra could provide
us only information about patient wounds, not patient demographics. The lack of access to patient
demographics was a limitation of the study, which Section 11.2 further discusses. However, we
were able to build a solid, robust, and accurate model based only on wound characteristics.

We designed the algorithms in three phases. The first phase required us to determine the relevant
inputs that the predictive model would include. The second phase required us to determine which
predictive-modeling techniques best fit the data. The third phase required us to create a
methodology that modeled wounds from two-dimensional images to three-dimensional models.

To determine the relevant inputs, we used statistical analysis to verify and confirm which covariates
were significant to the development of the model. We used box plots to find the upper and lower
limits for each covariate. We used correlation plots to determine variables of linearity. We also used
correlation heat maps to establish independence between covariates and statistical analysis to
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determine the relationships among each of the predictor variables and the output. This analysis led
us to what we hypothesized: that the size of the wound has the greatest impact on the time to
heal.

This statistical validation of the respective covariates showed that, despite the federal
government’s procedural standardization and regulations, little consistency exists across various
clinics in the collection of patient data. This fact makes it difficult to create a universal algorithm for
chronic wounds based on a characteristic such as the arterial, venous, or diabetic etiology of a
wound. From an engineering perspective, the recorded information differs among clinics. In other
words, the data that we received from Vohra included the dimensions of the wound, the
percentage of characteristics such as granulation and necrotic tissue, blood flow, and nutrition.
The only common patient statistics that all four clinics consistently collected were the dimensions
of the wound and the granulation of the wound. This limitation added a level of unexpected

complexity to the analysis.

We chose to explore multiple-regression, nonlinear-regression, and neural-network modeling
techniques for compelling reasons. Linear regression is the simplest form of predictive modeling.
Due to the complexity of the human body and the challenge of abnormal healing, we predicted that
the behavior of the data would not follow a linear relationship. We did, however, believe that we
needed to understand and analyze the data in the context of multiple linear regression. We
explored and ultimately developed a linear model to compare the fit of the data with that of the
other modeling techniques. We chose nonlinear regression because it includes foundation
algorithms, such as exponential, quadratic, and logarithmic behaviors. We determined the best
nonlinear-regression model would be based on the Cox regression algorithm.

Cox regression aids survival-time and time-to-event analysis. Unlike linear regression, Cox
regression assumes entirely independent data points. As a result, we structured the data with one
set of parameters for each wound, allowing us to focus only on whether the wound had healed by
the completion of the study. We chose neural-network modeling because it is the most complex
technique for analyzing the behavior of the data to predict the time to heal. Unfortunately, unlike
the previous two modeling techniques, the final output is not a mathematical equation but a set of
equation parameters. Comparing these modeling techniques using the same set of data provided
insight into the overall behavior of chronic wound healing.
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We used three data sets to evaluate the theory that the time to heal primarily depends on the size
and surface area of a chronic wound. Chapter 6 discusses the sample data set that we initially
acquired for preliminary study. We used this data set to test the behavior of the data and how
chronic wounds heal over time. For this preliminary examination, we had less information about the
patients and their wounds. Unlike the larger set of data, this preliminary data set did not come from
a wound clinic but from other sources. However, this data set allowed us to perform initial
regression and neural-network analysis to see whether we could establish credible algorithms
using only the inputs of Length 1, Length 2, and depth. This study supported the belief that we

could accurately predict the time to heal using mathematical algorithms.

The survival analysis and corresponding Cox regression proved to be a substantially better fit than
the multiple linear-regression analysis. Using past literature and logic reasoning, we estimated that
a chronic wound, regardless of the length of time it takes to heal, should reflect an exponential
decline in behavior. Cox regression assumes that the behavior of the data follows an exponential
decline and shows the relationship between the function, the analysis, and all the covariates.
Through analysis, Cox regression enables us to examine the survival time of chronic wounds. The
Cox regression analysis results in graphs that show the probability that the wound is healed at a
given time t. Cox regression analysis not only provides a mathematical algorithm, but also validates
the idea that only specific covariates truly affect the survival time of a chronic wound. Similarly, the
descriptive statistics of the Cox model and corresponding coefficients validate how the behaviors
of each of the variables affect the algorithm. Section 9.2 shows how each covariate affects the
output. In other words, every time Length 1 increases by 1 cm., healing time increases by
approximately 35%. Understanding how the variables affect the output is important in
understanding how a unit of change affects the output using Cox regression. By understanding the
effect of each variable, we can better predict the time to heal based on the change in surface area

and dimensions and how each predictor variable affects the output.

Additionally, Cox-regression equations differ depending on whether they include covariates. We
further analyzed this theory in the development of the second Cox regression model, which
includes Length 1, Length 2, and depth. We included these variables because they are the most
common predictors we collected across all wound clinics and because we theorized that these
covariates had the greatest effect on the time left to heal. More important, Cox regression provides

equations to validate the hypothesis of predicting time to heal.
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The Cox proportional hazard model depends on the baseline hazard function and its
corresponding coefficients of the respective covariates. Cox regression reinforces the notion that
the probability a chronic wound will survive until a specific time t and thus translates it to patient
benefits. Regardless of whether a patient has one wound, two wounds, or five wounds, each
wound has a unique healing trajectory. Cox regression allows the mass customization of predictive
models for wounds based on the patient’s retrospective data (figures 9.18 and 9.19). We have
created personalized wound-healing trajectories for the patients and their respective wounds. Cox
regression models can also predict the best-fit regression equation and an estimated time to
closure of a wound. Under these circumstances and with this data, this model was the most

credible that we could create.

We conjectured that the neural-network model, unlike the previous two models, would perform
better if we categorized wounds based on their initial aspect ratio. Aspect ratios provided
interpretive information about the shape of each wound, relative to the first record of Length 1 and
Length 2. Aspect ratios also allowed us to make certain generalizations. For example, the neural-
network models showed that most wounds have aspect ratios of 1 to 2, representing Length 1
and Length 2, respectively. This aspect ratio, however, did not appear to affect the total sum of
squared errors or the RMS error in either the training or the validation scoring. Sorting this data,
however, provided us with a general understanding of the behavior of wounds with specific aspect
ratios. For example, we observed that the wounds with aspect ratios of 1 to 2 got larger and then

smaller over time rather than simply becoming smaller.

Neural networks provided us a framework for developing reliable, predictive models for chronic
wounds and their time to heal. However, the development of a universal model was difficult without
the ability to use patient demographics as additional factors within the algorithms. For various
reasons, a number of observations supported the theory of an improbable universal predictive
model. We observed human discrepancy across clinics that resulted in inconsistency with wound

measurement and other factors.

We also investigated the difference in clinicians’ wound-measuring techniques and a clinician and
computerized wound-boundary determination. Clinicians have only the tools that the facilities
provide. For most clinicians, these tools may include only a paper ruler. Given these facts, the
accuracy and consistency of measurements from wound to wound can produce only so much
information. We then investigated whether high-quality photographs of wounds with a ruler could

provide more information about the size and shape of the wound. Thus, we developed a

237

www.manaraa.com



combination of tools, subprocesses, and an overall methodology that produced a precise wound

boundary and, ultimately, a three-dimensional virtual model of the wound.

Three-dimensional imaging and analysis provides us with more detail pertaining to the object of
interest — in this case, chronic wounds. Using a combination of the Adobe Photoshop image-
manipulation program, the Imaged image-analysis program, and Matlab programming, we
extracted the pixel location of the wound boundary over time. Through these tools, we were able
to precisely determine the wound boundary, create a matrix of the location of the wound boundary
using pixel coordinates, and import them as a three-dimensional spline in Solidworks. The spline
provided the shape and dimensions of the surface area of the wound, which in turn allowed us to

extrapolate the shape and create a three-dimensional model (Figure 8.25).

In addition to developing accurate predictive models for chronic wound-healing time, we also
pursued the development of precise three-dimensional models and representations of chronic
wounds. The original premise of pursuing three-dimensional modeling of wounds was to determine
whether the volume of a wound is a better indicator of wound-healing time than superficial surface
area. By building three-dimensional models of wounds, we discovered that we could more
precisely calculate the volume of a wound rather than estimating an approximate shape, such as a
rectangle or an ellipse. Unfortunately, without the ability to streamline the process of acquiring the
boundary of the wound and modeling it in Solidworks, the creation of a three-dimensional model is
cumbersome and tedious. Although we can create three-dimensional models of wounds in real
time, the process lacks sufficient automation to be efficient in a clinical setting. Regardless of the
real-time factor, the development of a three-dimensional wound model could assist clinicians in
better determining the underlying shape of a chronic wound and provide insight into how the
wound heals. Chapter 8 shows that we can produce an accurate representation for the wound
and successfully calculate the change in volume over time. This ability could lead to better, more

efficient algorithms that assist in the evaluation and diagnosis of chronic wounds.

In parallel with the development of three-dimensional wound models, we also investigated the use
of thermal imaging. We based the decision to include thermal imaging in the research on the fact
that the wounds had consistently higher temperatures than the surrounding tissue and the fact that
the change in temperature over time could indicate healing or nonhealing of wounds. We collected
the thermal-imaging data with the idea that average wound temperature would be a predictor
variable within the algorithms, alongside predictors such as length and depth. With the few wounds

that we were able to track over a short time, we discovered that the temperature did appear to
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change. However, without more data over a longer time, it is unknown whether this change was
due to healing or to the tolerance of the thermal imager. Unfortunately, we could not collect
enough data to substantiate the idea that the temperature of a wound differs from that of the
surrounding tissue. We included the work with the thermal imager because we believe the
relationship between the temperature of a chronic wound and time could affect the healing
trajectory of the time to heal. We strongly believe this avenue of research is worth additional

exploratory analysis, especially with a more accurate thermal-imaging camera.

Any of the predictive models indicates that it is possible to determine the difference between a
healed and nonhealed wound through computational analysis. To arrive at that conclusion was
more complex than simply classifying this variable as healed or nonhealed. The preprocessing of
the data included statistical analysis using box plots, correlation plots, and heat maps to support
the conclusion and determination of the modified healing threshold for each variable. Most wound-
care physicians we met throughout the research would agree that a healed wound measures 0 x O
x 0 cm and allow no other definition of a healed wound. In this case, a discrepancy arises between
medicine and engineering. Using this measurement, the healed threshold is not possible from an
algorithmic point of view. Instead, we used a reasonable threshold that produced accurate enough

algorithms in comparison with actual wound data.

We based the predictive models on the wounds themselves using the underpinning of survival
analysis and Cox regression (figures 9.18 and 9.19). Using the principles and assumptions of Cox
regression modeling, we analyzed the data set, which allowed us to construct the base algorithms
(equations 9.3 and 10.2) in parallel with the base hazard function. This algorithmic development
allowed us to then calculate the alternative survival function. The survival-function plot versus time
to wound closure provided us the necessary graphical representation to estimate the
corresponding trend line (figures 10.22 and 10.23) of the prospective wound. By fitting a spline to
the wound-survival data, we determined and predicted when the wound will heal by solving for x in
the spline algorithm at S;(t) = 0. The solution to x is the predicted time to heal. This solution

represents the number of days from conception — that is, from the first visit to the wound clinic,

t = 0 — to the predicted day of fully healed or the time in days when the probability that the

wound would survive is zero.
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11.2 ASSUMPTIONS AND LIMITATIONS

With the current study, the assumptions pertain primarily to the data and data collection. We have
two primary groups of data, from Vohra and data RBMC: Data Set A and Data Set B, respectively.

We performed the data acquisition in different ways but with similar assumptions for the two sets.

Data Set A includes the data we received that had already been unidentified. We received the data
in its rawest form, which included wound characteristics we previously discussed with the
company. Although we requested corresponding patient demographics to accompany the wound
information, federal HIPAA regulations prevented us from obtaining patient demographics and
unidentifiable patient information for this data set. Because Data Set A was larger than Data Set B,
we had to build the predictive models using Data Set A. We assumed that patient demographic
data does not have an effect on the time to heal for chronic wounds.

We were able to collect and control the data in Data Set B. Before collecting data, we had
assumed that wound clinics would record patient demographics, such as age, weight, medical
history, and nutrition. Unfortunately, patient demographics that we collected in the wound clinic
limited the data set, and the assumption was incorrect. We collected only the patients’ ages and

blood pressure. We did not have access to the patients’ entire medical records.

In general, we also assumed that all clinics required clinicians to know the same standard
measuring techniques, minimizing human variability and error in wound measurements. This
assumption was unrealistic. All of the clinics we visited stated that the accuracy of their wound
measurements depends on who performs those measurements. Clinicians have their own ways of
measuring and methods of interpreting the wound boundary. This assumption and limitation are
inherent components of predictive modeling and analysis of chronic wounds. Variability in wound
measurement and interpretation will continue until clinics perform wound measurements using

digital image processing and analysis.

For the current study, we assumed that patient demographic did not have a substantial effect on
the time to heal for chronic wounds. However, after assessing literature and expert opinion, we
believe that this assumption is incorrect. We recommend that future studies include patient

demographics in the predictive models to ensure the robustness of the algorithms.
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CHAPTER 12

Conclusions and Future Works

12.1 CONCLUSION

The research in this dissertation has extended far beyond the expectation of just developing a
predictive model to estimate time to heal for chronic, nonhealing wounds. We established a
process for using and integrating both still and thermal photography in wound clinics. We
advanced and refined a method for developing a three-dimensional model of a chronic wound, and
we contributed mass customized methods for creating predictive algorithms for patients’ chronic
wound-healing trajectories. These processes enable wound clinics and patients to establish trends
and connections using retrospective and current data. The model in this research gives an

estimated time to heal for patients’ chronic wounds rather than using a wait-and-see approach.

By comparing three predictive-modeling techniques, we have concluded that linear regression is
not a good fit for measuring chronic wound healing. The models of survival analysis and neural
networks enable a better understanding and analysis of the behavior of chronic wounds. These
models improve predictive capabilities from both survival analysis and neural networks. Survival
analysis and neural networks were equally accurate, but, unlike the survival-analysis technique,
neural networks produced large standard errors and standard deviations. Survival analysis initially
depends on the set of covariates at time = 0 and the length of time that the wound has existed. It
also includes the wound’s healing trajectory to predict the final time to heal. Thus, we believe that

survival analysis is better than neural networks in accurately predicting time to heal.

The results show that survival analysis allows a more comprehensive and more customized
method of producing more accurate and robust predictive algorithms. Part of this reasoning relates

to the lack of patient demographics and inconsistent wound data across clinics. The models use
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only the provided predictor variables. The analysis also considers redundancy in the covariates,
which can lead to unstable algorithms.

This research proposes models and methods to predict chronic wound-healing time. By integrating
consistency and technology into best practices, wound-care clinics can integrate real-time
predictive modeling into daily practice. We seek to contribute to improving predictive capabilities
and timing expectations for patients that suffer from chronic, nonhealing wounds.

12.2 FUTURE WORK

Future work includes promotion of certain goals for wound-care clinics in the United States. These
goals include a better understanding of standard care; more consistent integration of technology,
such as hybrid digital cameras; and more refined predictive models that include patient
demographics and additional wound-predictor variables. We also hope that future research will
refine the prototype model by adding parameters that clinicians have defined as pertinent to better
enhance the predictability of the model.

The comparison and analysis of theoretical versus actual implementation of overall standard
wound-care practice represent a branch of research. The practice in wound-care clinics do not
follow mandates from state and federal authorities. Further research would provide a better
understanding of the difference between theoretical guidelines and actual practice. The next steps
pertaining to further investigation into standardizing routine chronic-wound management and
operating procedures in wound-care clinics are:
* To understand regulations pertaining to the inclusion or exclusion of patient data in a
patient record and documentation on the information that wound clinics must collect;
To understand how to adapt the regulations to geographic locations and the economic
stability of the clinic; and
* To develop routine chronic-wound-management assessment tools and processes that can
be integrated in real-time clinic settings that better streamline chronic-wound assessment.

This research regarding routine chronic wound management found variability among clinics in
techniques such as wound photography. We suggest a more comprehensive study regarding
routine chronic-wound management and evidence-based best practices at various-sized wound
clinics in different locations. We also suggest collection of consumer insights regarding the
logistics, operations, and infrastructure of these facilities to create more efficient wound-care
clinics. We also recommend an attempt to better integrate technology, which includes wound
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EMRs and training on measuring and photographing wounds. The next steps for integrating real-
time imaging into wound care clinics are:
* To develop a consistent and detailed training standard operating procedure and program
to instruct clinicians in wound photography;
* To develop a set of digital-camera specifications for photographing wounds; and
* To develop a wound-care-specific EMR system that uses cloud-based computing to store
patient records and images.

As the cost of technology decreases, more research could focus on the use of thermal imaging
and surface-heat analysis in chronic wound care. We believe that the temperature difference
between a chronic wound and the surrounding tissue could have an effect on better predicting
time to heal. With more consistent integration in clinical practice, thermography could become an
indicator of wound-healing trajectory.

Future work also includes more comprehensive predictive models using a larger variety of data
from multiple sources. Future work should include a more comprehensive set of predictor variables
that include both patient and wound demographics. A more inclusive algorithm may lead to a
universal chronic-wound-healing predictive algorithm. Prospective work could also explore
incorporating treatments within a predictive model to determine whether a treatment is healing a
wound or failing to heal a wound. This work would involve a better understanding of how chronic-
wound-care treatments affect the healing trajectory of nonhealing wounds. This work would
include patient demographics for each chronic wound, the use of a greater variety of data sources,

and further exploration of the qualitative wound characteristics on wound health and wound-

healing trajectories.
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APPENDIX A: PRELIMINARY STUDY RAW DATA

Width Height Depth Weeks to Heal Weeks to Heal Weeks to Heal Width Height Depth Weight
(cm) (cm) (cm) Based on = Ellipsoid Natural Log Ln Ln Ln
Surface Area (cmA3) (Cm)
(cmA2)
8 12 2 24 50.3 3.18 3.92 2.08 2.48 0.69
8 4 1 12 8.4 2.48 2.13 2.08 1.39 0.00
12 12 2.4 52 90.5 3.95 4.51 2.48 2.48 0.88
3 0.7 1.5 2 0.8 0.69 -0.19 1.10 -0.36 0.41
8 6 3.5 18 44.0 2.89 3.78 2.08 1.79 1.25
12 8 2.1 30 52.8 3.40 3.97 2.48 2.08 0.74
5 8 1.5 1 15.7 2.40 2.75 1.61 2.08 0.41
3 3 1.5 3 3.5 1.10 1.26 1.10 1.10 0.41
6 6 2.3 8 21.7 2.08 3.08 1.79 1.79 0.83
8 8 2.5 24 41.9 3.18 3.73 2.08 2.08 0.92
3.5 3 2.5 4 6.9 1.39 1.98 1.25 1.10 0.92
4 2.5 4 5 10.5 1.61 2.35 1.39 0.92 1.39
3 0.4 1 1 0.3 0.00 -1.16 1.10 -0.92 0.00
6 6 2 9 18.8 2.20 2.94 1.79 1.79 0.69
12 8 1.1 12 27.6 2.48 3.32 2.48 2.08 0.10
6 3 1.1 4 5.2 1.39 1.65 1.79 1.10 0.10
6 4 1.1 5 6.9 1.61 1.98 1.79 1.39 0.10
8 6 1 10 12.6 2.30 2.53 2.08 1.79 0.00
4 4 1 3 4.2 1.10 1.43 1.39 1.39 0.00
6 6 2 13 18.8 2.56 2.94 1.79 1.79 0.69
8 6 1.5 10 18.8 2.30 2.94 2.08 1.79 0.41
4 4 1.3 3 5.4 1.10 1.69 1.39 1.39 0.26
6.5 2.7 0.8 3.5 3.7 1.26 1.30 1.87 0.99 -0.22
2.5 2.4 0.6 0.9 0.9 -0.11 -0.06 0.92 0.88 -0.51
6 4 1.3 7.8 8.2 2.05 2.10 1.79 1.39 0.26
6 4.3 2.2 14.2 14.9 2.65 2.70 1.79 1.46 0.79
5 3.5 0.5 2.2 2.3 0.78 0.83 1.61 1.25 -0.69
16 12 2.8 134.4 140.7 4.90 4.95 2.77 2.48 1.03
7 4.5 0.3 2.4 2.5 0.88 0.91 1.95 1.50 -1.20
2 0.5 0.3 3.0 0.1 1.10 -2.54 0.69 -0.69 -1.20
7.5 3.6 2 8.0 141 2.08 2.65 2.01 1.28 0.69
10 8 1 7.5 20.9 2.01 3.04 2.30 2.08 0.00
10 7 2 8.5 36.7 2.14 3.60 2.30 1.95 0.69
3 2 0.2 3.5 0.3 1.25 -1.16 1.10 0.69 -1.61
8 10 2.4 9.5 50.3 2.25 3.92 2.08 2.30 0.88
6.5 5.5 1.3 7.0 12.2 1.95 2.50 1.87 1.70 0.26
6 4.5 1.5 6.5 10.6 1.87 2.36 1.79 1.50 0.41
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APPENDIX B: RARITAN AY MEDICAL CENTER AFFILIATION AGREEMENT

EDUCATIONAL AFFILIATION AGREEMENT

THIS AGREEENT 5 made February 25, 2013
by and between NORTHEASTERN UNIVERSITY
having a business address &l 360 Huntington Avenue,
Boston, Massachusetts 02115 (hereafier “School™), and
RARITAN BAY MEDICAL CENTER, A NEW
JERSEY NONPROFIT CORPORATION, having a
busingss address ot 530 New Brunswick Avenue, Perth
Amboy, MNew Jersey 08861 (hereafier “Agency™).

WHEREAS, Agency owns and operates
hospitals in Perth Ambay and Old Bridge, New Jersey,
which provide acute earc gervices fo its patients,
mcluding wound cxre;) and

WHEREAS, School educates students enrolled
in its Mechanical and Industrial Engineering Department,
through didactic and research, to enable those students to
obtain advanced degrees; and

WHEREAS, Agency and School desire (o enter
into un Agreement fo cnabie students fo engage in
rescarch activities al Agency as pari of their advanced
degres program;

NOW, THEREFORE, in considerstion of the
mutual promises and covenants contained herein, the

pasties agree as follows:
1. DEFINITIONS

For purpost of this Agreement, the following
terms shall hove the meanings ascribed hereto:

1.1 Aprecment,  “Agreement” shall mean
this Educationn] Affiliation  Agreement and  any
amendments hereto,

1.2 Clinical _ Experienee. “Clinical
Experience™ shall mean that portion of Student rescarch
requested by School and performed a1 Agency that has
been approved by Agency’s Institationn] Review Board
und other appropeiate medical staff comminiees),

13 Eaculty, “Faculty” shall mean the
person(s) employed or retgined by School and serving as
supervisoris)instructoris]  for  Shedents  wnder  this
Agreement.

1.4 Siudent.  “Studem™ shall mean an
individual enrolled in the School and who intends to
conduct resesrch at Agency.

L TERM AND TERMINATION
2.1 The Term of this Agreement shall be
for one {1} year commencing on Februsry 25, 2013 and

ending on February 24, 2014,

Giaffiliation korhswsiem I-15-11

247

232 Agency shall have the right 1o
terminate this Agreement af any lime for any material
breach hereof by School, or in the evemt Agency
determines that the safety of eny patient, employee,
physicion, or any other individunl would be in jeopardy
by continuing this Agreement.

13 At its sole discretion, Agency may
immediately remave and the paricipation of
any Student who fails fo comply with applicable Agency
policies and procedures, or whose performance or
actions are determined 1o be detimental 10 the proper
funetioning of Agency.

24 School shall have the right 1o tesminate
this Agreement st sny time for smy materinl breach
hereaf by Agency.

RESPONSIBILITIES OF AGENCY

ER | Agency shall provide Clinscal
Experiences, if available, for Students that fulfill the
curniculum  requircments of the School’s advanced
degree program.

32 Agency shall designate those units o
arcas within Agency in which Students may be exposed
for their Clinical Experience,

33 Agency shall onent Faculty who will
come to the Agency, and Smudents, to Agency, including
policies and procedures - applicable 1o their conduct
during the Clinical Experience.

34 In the <vent that the Ageney
purticipates in more than one Educational Affiliation
Agreement at any one time, Apency shall determine
priorities for the use of Agemey facilities and services.

3

k5. Apency, through appropriate  staff,
shall be responsible for the oversight of all patient care
activities.

16 Prior to the Clinical Experience,

Agency shall approve the number of Students, the dates
of atendanse, and the arces to be invelved in the Clinical
Experience.

4. RESPONSIBILITIES OF SCHOOL

4.1 School shall be solely responsible for
the planning =nd implementtion of the research
program, incloding but mot lnited to  academic
administration, curriculum content and programming,
faculty appointments and administration, requirements
for Student admission, promotion and graduation, and
maintenance of all Student recards and reports.

4.2 Any proposed change in an approved
Clinical Experience must be approved in writing by
Agency's [nstilutional Review Board.
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4.3 School shall be responsible for the
instruction and evaluaton of all Smdents as well as the
dejermination of all grades or deprees o be awasded
Students  for their perticipation in  this  Clinical
Experience.

44 [uring the Clinical Experience, on.site
Faculty and Stadents shall comply with spplicable
policies and procedures of Agency, including bul not
limited to thase relating 1o patient confidentiality,

45 Both during and after the Clinical
Experience, Faculty and Students shall not bresch the
confidential nature of any patient information with which
they moy have pocess during the Clinical Experience.
Faculty and Studcnis further agree do comply with all
federal and stare laws regonding the confidential natune
of patient medical records and any other form of patient
information.  School shall ensure that Faculty and
Students panticipating in any Clinical Experience sign a
confidentiality agrecment reasonsbly acceptable o
Ageney prioe to participating i any Clinical Expenence.

4.4 Schoal shall ensure that all Stadents
end Faculty have completed ond filed cerifying
documents with School, prior to the commencement of
any Clinical Expericnce, sssuring thai each meet the
following health or healih-related requirements;

{a) imitial  physical examination,
annually thereafter;

b} Rukells, Rubeola, and Varieella - proof’
of positive uters or documentation of immunity in
writing from a licensed physician; (c)

PPD - initin] step 2 and current within one year,
and & Manioux test annually (hereafier; amyone testing
positive require 8 current chest x-ray;

{d) Hepatitis B vaccine status - sither
declined, in progress, or completed (o titer of immunity
is recommended);

(&) any other  health  requirements
esmhlished by Agency for its own employees;

{n respiratory mask and it testing on all
Students and Faculty [ Agency shall identify the type of
mask utilized at Agency'); and

g eriminal background check wverifying
no criminal record,

4.7 Prior to each Clinical Experience,
School shall submit in writing to Agency o list of
Students and Faculty verifying that they have met all of
the health, training, and any other requirements set farth
in this Agreement.

48 School shall provide all Students and
Faculty who are to be sent to the Ageney training in the
following arcas:  OS5llA Hazasdews Communication
Smndard, Fire/Electrical Safety, Infection Control, Body

and

CGiKaflllimion Monheassrn 2-25-13
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Mechanics, Safe Waste Digposal, OSHA Blood Bome
Pathogens, Agency HIFAA Notice of Privacy Practices,
Corporate Compliance. This training shall be provided
before o Students or Faculty are sem fo Agency.
Students shall complets Agency's on-fine resource guide,
Agency will assist in this training if requested by Schoal.

49 School shall ensure thot Stsdents
understand they are not entitled to wages or any benefits
for their sctivities during the Clinical Experience with
Apgency and are not employees of Agency at amy time
while assigned fior this Clinical Experience,

410  School shall ensure that Students
understand that any medical freatment, emergency of
otherwise, required by any Student for injuries incurred
during Clinical Experience will be covered through said
Smdent’s personal health insurance pian or through is or
her own resources.

4.11 School shall advise Siudents that
Siudents bear the cast of all tansportation, meals and
lodging related to this Clinical Experience.

411  School shall keep snd mointain all
records and reports on the Students’ Clinical Experience.
5 GEMNERAL PROVISIONS
§1  Student Uniforms and Identification.
All Students shall wear the uniform of School, i any.
All Students shall wesr a mame g identifying
themaelves by name and as @ student of School, and shall
introcuge themselves o all patients as shadents,

52 Insurapcs. Both parties shall maintain,
al & minimum, the following insurance, and provide the
olher with & Certificate of Insurance evidencing this
covernge at or prior 0 the commencement of this
Agreement, ond prior o the expiration of any such
policies of insurance,
General liahility 51,000,000 per claim,
£3.000,000 annunl nggregate
5 1,000,000 per cloim;,
53,000,000 nggregate
Waorkers' Compensation  Statutony

School shall ensure that all Students and Faculty
are covered by B policy of professional Labality §
in the amount set forth above. Such insurance shall be
with o company or compenies reasonably satisfactory to
the ether party, or through o program of sel f-insurance or
other risk financing mechanism reasenably scceptable to
the ather party, or any combination thersof Should
School’s policy or policies of insurance be of the claims-
made type, School shall assume llability for all Future
claims presented and arising out of the acts or missions
of School, its employess, Faculty, and Students umder
this Agreement, A Certificate of Insurance evidencing

Professional |ihility
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these coverages shall be provided 1o ench party upon
execution of this Agreement and prior to the expiration
of each policy of insurance.

53 Relationship betweon the Partics. This
Agreemnent shall in no way be interpreted as creating an
ggeney or employment between the pariies. Faculty and
Studients shall not be construed as employees or agents of

Agency.

54 Governing Law. This Agreement shall
be deemed to have emered into and complegely
performed in the State of New Jarsey, The interpretation
end enfo i of this Agr shall be governed by
laws of the Smic of New lersey, withowt regard fo its
choice of law provisions,

5.5 Severahility. The invalidity or
unenfarceability of any provision of this Agreement shail
nol affect the validity or enforceability of any other

Mn.

56 Amenderients. Any amendments to this
Agreement shall be effective only il in writing and
signed by both parties,

57 Waiver. Mo waiver of a breach of any
movision of this Agreement shall be construed 10 be o
waiver of any breach of any other provision. Mo delay in
actlng with regard to any breach of any provision of this
Agreement shall be construsd o be o waiver of such
breach.,

58, Cigndgr.  Any noun o pronoun used in
this Agreement shall be consirued in the mesculine,
feminine, or neuler & its sense and uss may require,

59 Assignmens,  MNesther party shall have
the right to sssign thic Agreement, and any atternpled or
purparted assignment shall be null and void

5100  Captons, Captions contained in this
Agreement are inserted only 88 a matier of conveniomee
and in no way define, limit, or extend the scope or intent
of this Agreement or any provision hereaf,

511  MNofices. Any natice required o be
given by this Ag t shall be d d o have been
made on the date received i semt wia Certified Mail,
Requmn Receipt Requested, or recognized overnight courier
with verification of receipl, addressed as set forth below,
or i any other address designated by the party by potice
consistent with this section:

[T Agency:
Raritan Hey Medical Cenber
30 New Brunswick Avenue
Perth Ambaoy, Mew Jemey (885|
A PresidentCED

I 2 Schaal:
Noetheasem Leversily
Il Huntagion Avenue
Baosinn, Massachusens 0215
Atin:

kEKaflistion Nebeasiem 21513
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2 i i
Party. Bath parties acknowledge snd sgroe that cach of
them and their counsel have hod an oppertunity fo review
this agreement, and that ihis agreement shall not be
construed against one party merely because that party

513 Entire Agreement.  This Agrecmeni
constitutes the enfire greement of the parties with
respoct to this suibject matter.

514  Awhority o Bind The individuals
signing on behalf of their respective institutions represent
and warramt that they have the sutharity to enter into this
Agreement.

IN WITNESS WHEREOF, the pamics herelo
have execuied this Agreement by their duly authorized
representalives.

Raritan Bay Medical Center

Thornas G, Shanahan

By
Tile  Sr. Yice President'CFO

Northeastern University

e B
Title: gt farr

Approved as to Form

N 2lzeles
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APPENDIX C: VOHRA WOUND CARE PHYSICIANS DATA AGREEMENT

Data Use Agreement
For Disclosure of a Limited Data Set
For Research Purposes

This Data Use Agreement For Diisclosure of a Limited Data Set For Research Purposes (the “Agreement™) is
made and entered into this 28th day of February, 2013, and is effective on the date of the last signanme below by and
among Vohra Health Services, P.A ., Volra Wound Physicians of FL, LLC, Vohra Wound Physicians of IL, 5.C., Vohra
Wound Physicians of NY, PFLLC and Vohra Wound Physicians of CA, P.C. (collectively, the “Covered Enfity™) and
TJessica Chin, PhD Candidate " Recipent™) (collectively “the Parties™).

WHEREAS, Coversd Entity maintains certain confidential protected health information that Fecipient desires to
use for research purposes permitted under 45 CFR § 164 514(¢) of the Privacy Rule {defined below); and

WHEREAS, prior to Covered Enfity releasing any confidential protected bealth information to Recipient, the
Privacy Rule (defined below) requires the Parties to enter into a data use agreement as defined in 45 CFR 5 164 514eW4)
pursuant to which Eecipient agrees to certain restmictions on the use and disclosure of such information.

NOW, THEREFORE, intending to be legally bound and for and in consideration of the mmtual covenants
contzined herein, and for other good and wvaluable consideration, the receipt and sufficiency of which are hereby
acknowledged, the Parties heteto agree as follows:

1. RECITALS. The Recitals above are tue and correct and are incorporaied herein by reference as if
fully set forth below.

2 ACCESS TO DATA. Covered Entity shall provide Recipient with a Limited Data Set (defined below)
of Protected Health Information (“PHI™) that contains the minimum necessary data for the research project. A description
of the data files provided by Covered Entity to Recipient is attached hereto as Exhibit A Under no circumstances shall
Covered Entity be required under this Apreement to provide Fecipient with any information that does not qualify as part
of a Limited Data Set.

3 DEFINITIONS. Except as otherwise defined herein, any and all capitalized terms in s Apreement
shall have the definitions set forth in the Health Inswrance Portability and Accountability Act of 1996 (“HIPAA™) and the
repulations promulgated thereunder including, without limitation, the federal privacy standards as contained in 45 CFR
Part 160 and Part 164, Subparts A and E (the “Privacy Bule™) and the federal secunty standards as contained in 45 CFR.
Part 160 and Part 164, Subparts A and C (the “Security Rule™).

31 Limited Data Set, as defined in the Privacy Rule at 45 CFR § 164 514(e)(2), is PHI that may
include certain specific identfiers and mmst exclude other direct identifiers in the PHI about the individual or about
relatives, employers, or household members of the individual. A Limited Data Set may inclode if needed for the purpose
of the research: (1) dates (e.g., admission, discharge, and service dates, dates of birth and death), and (2) five-digit zip
codes and state, county, city, and precinct, but not any other postal address information. A limited data set noost exclude
the following direct identifiers of an individual and his or her relatives, employer(s), and bousehold members: (i) name;
(ii) postal address information (except town of city, state and zip code which are permitted); (iii) telephone numbers; (iv)
fax mumbers; (v) electronic mail addresses; (vi) social security numbers, (vii) medical record mmbers; (viil) health plan
beneficiary numbers; (ix) account numbers; (x) certificate/license numbers; (xi) license plate mumbers and other vehicle
identifiers and serial mambers; (xii) device identifiers and serial numbers; (xiii) Web Universal Resource Locators (URLs);
(=iv) Internet Protocol (IP) address rumbers; (zv) biometric identifiers including finger and voice prints; and (zvi) full-
face photographic images and any comparable images. In the event of any conflict between this description and the
definition 31 forth in the Privacy Fule, the Privacy Rule definition will govem.

32 The following terms shall also have the meanings given to them in the Provacy Rule: Covered
Entity, Individual, PHI, and Required by Law.
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4. AUTHORIZED PARTIES. The Recipient is the primary responsible person for the research project
described In paragraph 5 below and persons mnder her dect supervision (each mdradually an “Authonzed Party™ and
collectively, the “Authorized Parties™), are authonized to use the Limited Diata Set or any part of it on behalf of Eecipient.

Recipient shall ensure that any Authorized Party agrees to abide by the terms of this Apgreement. Recipient agrees that
access o the Limited Data Set covered by this Agreement shall be limited to the minimum amount of data and minimom
number of individuals necessary to achieve the research purpose stated in Section 5 below.

5. PERMITTED USE. ERecipient agrees and shall ensure that any Authorized Party agrees to use the
Limited Data Set only for the purposes of the following research project, except as required by law. Investipating a
Framework for Modeling and Analysis for Wound Progression.

If Recipient publishes or utilizes in any form the research project and/or the results thereof, then Recipient shall
include the name of Covered Entity, Christopher Leonard, DO, Director of Medical Informatics and EHE Development,
and Shark Bird, M D_, Chief Medical Officer, as providers of some or all of the data used by Fecipient in the research
project.

6. RESTRICTIONS ON USE.

6.1 FRecipient agrees that it will not use or further disclose the Limited Data Set or any information
contained therein other than as permitted by this Agreement or as otherwise required by law.

62 Eecipient shall use appropriate safeguands to prevent any use of disclosure of the Limited Data
Set or any information contained therein other than as specified in this Asreement. To the extent that Recipient receives,
CrEates, maintains of transmits Electromic PHI, Recipient shall use appropriate administrative, plrysical and technical
safeguards that reasonably and appropriately protect the confidentality, integrity, and availability of any Electronic PHI.

63 Eecipient shall not use the information contained in the Limited Diata Set to identify or contact

64 ERecipient shall ensure that any agent or subcontractor to whom it provides the Limited Data Set
agrees o the same resictions and conditions that apply to the Recipient and Authorized Parties under this Agreement.
Recipient shall terminate its agreement with any agent of subconractor 1o whom it provides the Limited Data Set if such
agent of subcontractor fails to abide by any material term of such agreement.

65 Recipient shall comply with applicable state and local security and privacy laws to the extent
that they are more protective of the mdividual s privacy than the HIPAA Privacy Rule and Security Rule.

7. REPORTING. Recipient agrees to repornt to Covered Entity any use or disclosure of the Limited Data

Set not provided for by this Apreement of which Recipient or any Authorized Party becomes aware, or any Security
Incident of which it becomes aware. Such reporting shall take place within ten (10} calendar days of Recipient or
Antherized Party becoming aware of the unauthorized use or disclosure.

8. OWNERSHIP. Recipient and Covered Entity each agree that Covered Entity retains all ownership
rghts to the Limited Diata Set and that Recipient does not obtain any right, title, or interest in any of the data fumished by
Covered Entity to Eecipient as part of the Limited Data Set. Recipient shall note sell, rent, lease, loan, disclose, use or
rense any of the information contained in the Limited Data Set except as specified in this Apreement or except as Covered
Entity may authorize in wiiting.

9. TERMINATION.

91 This Agreement shall be effective on the Effective Date set forth above and shall contirme as
long as Recipient retains the Limited Data Set.

92 Recipient may terminate this Apreement by retuming or destroying the Limited Data Set and
providing written verification of this to the Covered Entity .

23 Should the Covered Entity become aware of a pattem of activity or practice on the part of
Recipient that constitnies a mraterial breach of this Apreement, the Covered Enfity shall have the right to summarily
terminate this Apreement.
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94 This Agreement is valid only if the data being provided meets the definition of a “Limited Data
Set” as specified in HIPAA Both Parhes bebeve that the data does meet this defimiton. If, subsequent to implementation
of this Apreement, either Party becomes aware that the data provided by Covered Entity to Fecipient exceeds the
definition of a Limited Data Set as defined in 45 CFR & 164 5144e)(2), this Agreement shall be terminated, and Fecipient
agrees to follow the Covered Entity's direchions with respect to the rehomn or destruction of the Limited Data Set. In this
event, the Parties agree to make reasonable efforts to devise altermative means of providing the Limited Data Set to
recipient in compliance with HIPAA.

10. MISCELLANEOQUS

101 Recipient agrees (o mitigate, to the extent feasible and allowed by law, any harmful effect that
is kmown or becomes known to Recipient that arises from a use or disclosure of the Limited Data Set by Recipient or any
Authorized Party in violation of this Apreement, the Privacy Rule, or the Secuzity Rule.

102  Within five (5) calendar days of a written request by Covered Entty, Recipient shall allow
Covered Entity to conduct a reasonable inspection of Reapient’s facilibies, systems, books, records, agreements, and
policies and procedures relating to the nse or disclosure of the Limited Diata Set for the purpose of determining Recipient’s
compliance with the terms of this Apreement. Any failure of Covered Enfity to inspect of to detect or notify Recipient of
an unsatisfactory practice does not constinte acceptance of the practice by Covered Entity or a waiver of any remedy or
right Covered Entity has under the Apreement or applicable law.

103  When Covered Entity reasonably concludes that an amendment to this Agreement is necessary
to comply with applicable law_ Covered Enfity shall nohfy Recipient i writing of the proposed modification(s) (“Leagally-
Required Modification="). Covered Entity shall request Fecipient’s written approval in the form of an amendment to this
Agpreement at the time of notification. Recipient shall have thirty (30) days to sign the amendment and retun it o
Covered Entity. Reciprent’s rejechion of a Legally Requued Modification is grounds for tenmination of this Agreement by
Covered Entity on at least thirty (30) days’ prior written notice to Recipient.

104  Fecipient shall comply with the requirements of 45 CFR Sections 164524 (Access of
Individuals to PHI), 164526 (Amendment of PHI) and 164.528 (Accounting of Disclosures of PHI) as directed by
Covered Enfity.

105 Any ambigunity in this Agreement relafing to the nse and disclosure of the Limited Data Set by
Recipient shall be resolved in favor of a meaning that further protects the privacy and security of the information.

106  This Apreement may be executed by facsimile sipnatore and by either of the Parties in
counterparts. A fax of a sipnature page sipned by a party hereto shall be as valid and binding as an orginal thereof. If
mltiple counterparts of this Apreement are executed, each shall be deemed an ordginal, but all such counterparts shall
constitute one (1) and the same instroment.

107 This Agreement may not be assipned by Recipient without the prior written consent of Covered
Entity.

10.8. This Asreement has been executed and delivered in, and shall be interpreted, constmed, and
enforced pursuant to and in accordance with the laws of the State of Florida only, without regard to conflict of laws
principles. Vemme for any action arising out of or relating to thiz Apreement shall be in Broward County, Florida.

109  The Partes hereto agree and stpulate that the orginal of this Apreement, including the
signature page, may be scarmed and stored in a computer database or similar device, and that any printout or other cutput
readable by sight, the reproduction of which is shown to accurately reproduce the original of this document, may be used
fior any purpose just as if it were the original including proof of the content of the original writing .

10,10 This Apreement, and any exhibits, constitutes the entire agreement between the Parties hereto
with respect to its subject matter and there are no other representations, understandines or agreements, whether written or
oral, between the Parties relating to such sohject matter.

[Signature page immediately follows]
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IN WITNESS WHEREQF, the parties hereto have executed this Apreement as of the date first written above.

COVERED ENTITY

Viobra Health Services, P.A.
Vohra Wound Physicians of FL, LLC
Vohra Wound Physicians of IL, LLC
Vohra Wound Physicians of NY, PLLC
Vohra Wound Physicians of CA,P.C.

' Christopher Leonard, D.O., Authorized Agent

Jésiea Chin PhD-Camdilae
Date: February 28, 2013
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APPENDIX D: THERMACAM S65 TECHNICAL SPECIFICATIONS

ThermaCAM® S65 Technical Specifications

ThermaCAM 565 System Includes:

IR camera with visual camera, Laser LocatlR, remote with LCD display

| wmEinam High-cutput multi-LED target light
13 mrad -
2,48 interpolating -
x e — Carrying case. lens cap, shaulder strap, hand strap
e [T
Focal plane armsy [FPY) unooled microbalometer, 320 x 240 pivels Bateeries (2}
75w idpm Power supply
Tharmal sansitivity & SV60Hz DOF Cat30°C Bateery charger
Built-in digital video 640 x 480 pineds, full color 5 g
x
T o Viden cable with RCA plug
Viewfindr Built-in high-resolution color LCT (TFT) 168 e
Videa cutput 4" LCD with integrated remate control A5 170 EAMNTSC or CORPAL S-video cabie
" Extarnal display Built-in high-resclution color LCDH(TFT) 256 MB CompactFlash card
e The rmaCAM QuickViewTM software
Lenses ional)
AP Ctr+120F C .07 42087 By, e 1 [lewtto ]
[ Cto +500° C ¢+37°F to +837° FL, ;] 3N Telescape (7 x 5.344m)
Temparature rangas ﬂwcmnwt&mFmﬂg’fxmv] leebmpeErlﬂxKMJm
Up to-+2000" C (+1622° F), optional 0.5K Wide angle (452 x 350.1m)
Fisdel of viow/ 03X Wide angle (B0 x £0</0.1m)
Accuracy (% of reading) =P Cor: % eiiniion s distimcn fgmhwhstmm
SR i rmen x T5emem/Beramy
Massuramant medas e - Rtor e e 50 prm Clase-up {1 S x 1mend 1 mm)
Up 15 movable circle areas or boxes Up to2 isotherms. Line profile. Wemalide: Optics/Heads-up Diplay
[Emissivity comractions ‘Variable fromi 001 to 1.0 ar select from listings in pre-defined material kst
Firawirs cutput Real-time digital trarefer of radiometric
Auinmatic comrections based on user inpat for reflected ambient temperatue, (IEEE 1354} thermal images or digital videa (OV) out
Moasuramant foatures : ot o e 2
Imnge - data,
— - — USE/RS232 -
Optics transmission correction Autoratic, hased on signals from intemal sensars vaice and text transfer ta FC
[y —— DA Twar-way cata transier from lapiop, PDA
PRemovable CompactFlash {256 MB} memary card; built-in Flash memory Remata comtrod Rernowable handle with redundant
Typa {100 imagesy; budt-in RAM memry for burst and AV recording ‘contrals and LCDH

Fila format - THERMAL

Standard JPEG; 14 bit thermal measurement data incuded

Filla format - WISUAL

Standamd BPEG inked with comesponding thermal image:

. Iput wia suppied Blustoath® wirdess headset up to 30 seconds
‘Voics snnotation of images of cigital voice clip per image sioned with image
Taxt annotation of images Predefined by wser and stoeed with image

System Status indicator

Shows status of battery and storage media. Indication of power,

| LD display | commurication and storage modes.
Battory typa Li-ion, rechargeabile, fieid-replaceabie
Battary oparating tima 7 hiours conErwous operation
" Charging systam In camera (AL adapter o 12V fram car) oe 2 bay inteligent charger
AC adapter 1 104220 WAC, S0/60Hz or 12V from car
e T b {cable with standard piug opticnsl)
Pawsr caving Automatic shutcown and slesp mode (user-sslectable)

210 kg (44 lbsy handle jincludes remote control,

‘Oparating tamperatura rangs 15 Cto+50F C(5" Fio 12 R |
Starnga ang 47 Cto+7F C -4 Fio 158 F) |
Hummidity Opemting and sorage 109 to 95%, non-condensing |
Encapsulation IP 54 L 529 |
Shadk Opertianal: 15, EC 68-2-29 |
Vaemion Opetrnt 16, EC 6826 |

Waight LD, video camera and 1.4 kg (2.1ibs) enchuding batiery and handle
Siza 100mem x 1 20mm x 220 mm { 29 x 47" x 8.7 camera anly
Triped mounting -0
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APPENDIX E: MATLAB CODE, DATA CLEANING

CHANGE THE DATE

%% Start with a clean slate
clear all;

close all;

clc;

$% Import Excel Data

data = csvread('rawdata.csv');
[r,c] = size(data);

%% Row Number

for count=1l:r
data(count, 16)=count;
end

%% Calculate Difference in Patient Visits (Days)

y=0;
for x=1:r
if x < «r
y = x+1;
end
row = data(x,16); $ROW Number
newrow = data(y,16); $Next ROW Number
if data(row,3) == 0; $Determines First Patient Visit
start = data(row,2); $Set "Patient first visit"
end
wound_id = data(row,1); $Finds first instance of Wound ID
wound check = data(newrow,1l); $Finds every subsequent Wound with

the same Wound_ ID

next = data(newrow,2); $Determines the Subsequent Patient
Visits
while wound id == wound check & newrow <= r $Loop that finds the

difference between visits for EACH patient

next = data(newrow,2);
diff next - start;

data(newrow, 17)=diff;

newrow = newrow + 1;
if newrow < r+l

wound_check = data(newrow,1);
end
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end
end

$% Write to CSV File
csvwrite ('changeintime.csv', data);

CLEAN DATA

%% Start with a clean slate
clear all;

close all;

clc;

$% Import Excel Data
data_cleaning = csvread( 'cleaned triple minus ones.csv');
[r,c] = size(data_cleaning);

$% Length A: Cleaned
row = 1;
for count=l:r
if data cleaning(count,4) <= 4.5

for col=l:c
length _a cleaned(row,col)

data_cleaning(count,col);

end
row = row + 1;
end
end
[r,c] = size(length a cleaned);

%% Write to CSV File
csvwrite ('cleaned length a.csv', length a cleaned);

$% Length B: Cleaned
row = 1;
for count=1l:r

if length _a cleaned(count,5) <= 5.5
for col=l:c

length b cleaned(row,col) = length _a cleaned(count,col);
end
row = row + 1;
end
end
[r,c] = size(length b cleaned);

%% Write to CSV File
csvwrite ('cleaned length b.csv', length b cleaned);
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TRAINING AND TESTING DATA FOR MISSING DEPTH VALUES

%% Start with a clean slate
clear all;

close all;

clc;

$% Import Excel Data

data = csvread( 'cleaned length b.csv');

[r,c] = size(data);

%% Separation of Training and Testing Data to Determine Missing Depth Values

row = 1;

for count=1l:r
if data(count,6) == -1

for col=1l:c

testing depth(row,col) = data(count,col);
end
row = row + 1;
end
end
row = 1;

for count=1l:r
if data(count,6) > -1

for col=l:c
training depth(row,col)=data(count,col);
end
row = row + 1;
end
end

$% Write to CSV File
csvwrite ('training depth.csv', training depth);
csvwrite ('testing depth.csv',testing depth);

CLEANING DUPLICATES

%% Start with a clean slate
clear all;

close all;

clc;

$% Import Excel Data
cleaned = csvread('N _CleanedDataW Duplicates.csv');
[r,c] = size(cleaned);

%% Clean Duplicates (Round 1)
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while row<=r
if cleaned(row,l) == cleaned(newrow,l) && cleaned(row,2) ==
cleaned(newrow, 2)
for c_temp=1:16
temp(r_ temp,c_temp)=(cleaned(row,c_temp)+cleaned(newrow,c_temp))/2;
int cleaned(f _row, c_temp) = temp(r_ temp, c_temp);
end

f row = £ rowt+l;
r temp=r_ temp+l;

if row < r
row = row+l;
newrow = row+l;
end
else

for col=1:16

int cleaned(f row,col)=cleaned(row,col);
end

f row=f row+l;
end

row = row+l;

if row<r
newrow=row+1l;

end

end

$% Size of Int CLeaned Matrix
[r,c] = size(int cleaned);

%% Clean Duplicates (Round 2)

while row<=r
if int cleaned(row,l) == int cleaned(newrow,l) && int cleaned(row,2) ==
int cleaned(newrow,2)
for c_temp=1:16
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temp(r temp,c_temp)=(int cleaned(row,c_temp)+int cleaned(newrow,c_temp))/2;

final cleaned(f row, c_temp) =
end

f row = £ rowt+l;
r temp=r_ temp+l;

if row < r
row = row+l;
newrow = row+l;
end
else

for col=1:16

temp(r_temp,

c_temp);

final cleaned(f row,col)=int cleaned(row,col);

end

f row=f row+l;
end

row = row+l;

if row<r
newrow=row+1l;
end
end

%% Size of Int CLeaned Matrix
[r,c] = size(final cleaned);
%% Export to CSV

csvwrite('O_CleanedData NO Duplicates.csv',final cleaned);
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DELETE SINGLE-VISIT WOUNDS

%% Start with a clean slate
clear all;

close all;

clc;

$% Import Excel Data
cleaned = csvread('P_DeleteSingles.csv');
[r,c] = size(cleaned);

%% Create Completely Cleaned Matrix
row = 1;

for x=1:r
if cleaned(x,4) == 1
for col=1l:c
final(row,col)=cleaned(x,col);
end
row = row+l;
end
end

%% 100% Cleaned Matrix
csvwrite('100 Percent Cleaned Data.csv',final);

FIND WOUNDS WITH MORE THAN FIVE VISITS

%% Start with a clean slate
clear all;

close all;

clc;

$% Import Excel Data
data = csvread('AB DataWithElimDupl.csv');

[r,c] = size(data);
%%

start_row = 1;
check row = 2;

count = 1;
new_row=1;
cc=0;
while check row < r
wound_ id = data(start _row,1l);
if start row < r
wound_check = data(check _row,1);

end

while wound id == wound check;
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check row = check row+l;
count = count+l;
wound_check = data(check _row,1);

end

% count
% start_row

if count > 6
rr = start_row;
while cc < count
for col=l:c
new_data(new_row,col)=data(rr,col);
end
new_row = new_row+l;
rr = rr+l;
cc = cc+l;
end
cc = 0;
end
count = 1;
start_row = check_row;

if start row < r

check row = start row+l;
end

end

%% No Duplicates
csvwrite('AC_GreaterThané6Visits.csv',new_data);
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TRANSPOSE DATA BASED ON ASPECT RATIO

%% Start with a clean slate
clear all;

close all;

clc;

$% Import Excel Data
ARl = csvread('AH AspectRatiol.csv');
[AR1 r,ARl c] = size(ARl);

ARl volume = csvread('AH UniqueAspectRatiol.csv');
[AR1 new _r,ARl new c] = size(ARl_volume);

%% Make New Data Matrix Internal Zero Cells = 999
for x=2:AR1 new r
for y=2:AR1 new c
ARl volume(x,y) = 999;
end
end

%% Make New Matrix for L1, L2, D

for x=1:AR1 new r
for y=1:AR1 new c

ARl L1(x,y) = ARl volume(x,y);

ARl L2(x,y) = ARl volume(x,y);

ARl D(x,y) = ARl volume(x,y);
end

end
%% ARl _Volume

row = 2;
data _row = 1;

col of time = 2;
while row <= ARl new r
wound = ARl (data_row,1);
wound unique = ARl volume(row,1l);

while wound == wound unique

time = ARl (data row,6);
volume = ARl (data row,10);

while ARl volume(l,col of time) ~= time && col of time < ARl new c
col of time = col of time+l;

end

t = ARl volume(l,col of time);
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if t == time
ARl volume(row,col of time) = ARl(data row,10);
end

data_row = data_ row+l;

if data row <= ARl r
wound = ARl (data_row,1);

else
break
end

end

row = row+l;
col of time = 2;

end
$% ARl L1

row = 2;
data _row = 1;

col of time = 2;
while row <= ARl new r
wound = ARl (data_row,1);
wound unique = ARl Ll(row,1l);
while wound == wound unique
time = ARl (data row,6);

while AR1 L1(1l,col of time) ~= time && col of time < ARl new c
col of time = col of time+l;

end
t = AR1 L1(1l,col of time);
if t == time
ARl Ll(row,col of time) = ARl(data row,7);
end

data_row = data_ row+l;

if data row <= ARl r
wound = ARl (data_row,1);
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else
break
end

end

row = row+l;
col of time = 2;

end
%% ARl L2

row = 2;
data _row = 1;

col of time = 2;
while row <= ARl new r
wound = ARl (data_row,1);
wound unique = ARl L2(row,1l);
while wound == wound unique
time = ARl (data row,6);

while AR1 L2(1l,col of time) ~= time && col of time < ARl new c
col of time = col of time+l;

end
t = AR1 L2(1l,col of time);
if t == time
ARl L2(row,col of time) = ARl(data row,8);
end

data_row = data_ row+l;

if data row <= ARl r
wound = ARl (data_row,1);

else

break
end

end

row = row+l;
col of time = 2;

265

www.manharaa.com




end

$% AR1 D

row = 2;
data _row = 1;

col of time = 2;
while row <= ARl new r
wound = ARl (data_row,1);
wound unique = ARl D(row,1l);
while wound == wound unique
time = ARl (data row,6);

while AR1 D(1l,col of time) ~= time && col of time < ARl new c
col of time = col of time+l;

end
t = AR1 D(1,col of time);

if t == time
ARl D(row,col of time) = ARl(data_row,9);
end

data_row = data_ row+l;

if data row <= ARl r
wound = ARl (data_row,1);

else
break
end

end

row = row+l;
col of time = 2;

end

$% Transposed Matrix Based on Aspect Ratio

csvwrite('AI AspectRatioMatrixl Volume.csv',ARl _volume);
csvwrite('AI AspectRatioMatrixl Ll.csv',ARl1 Ll);
csvwrite('AI AspectRatioMatrixl Ll12.csv',AR1l L2);
csvwrite('AI AspectRatioMatrixl D.csv',ARl D);
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TIME REMAINING

%% Start with a clean slate
clear all;

close all;

clc;

%% Import Excel Data

data = csvread('AL ToFindTimeRemaining.csv');

[r,c] = size(data);
%% Find Time Remaining

row = 1;

next row = 2;
count = 1;

t x=2
t =1

.
14
.
14

while row < r

start = data(row,3);
start time = data(row,6);
next = data(next row,3);
time(1l,1) = start_time;

while next ~= 0

if data(next _row,3)
time(t_x,1) = data(next _row,6);
t X = t _x+1;

end

if next row == r
break

else
next row = next row+l;
next = data(next row,3);

end

end

while row < next row

data(row, 7) = time(t _x,1);
row = row+l;
t x = t x-1;

end

if next row == r
data(next_row,7) = 0;

end
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next row = row+l;
t x = 2;

end

%% Transposed Time to Heal
csvwrite('AL TimeRemaining.csv',data);
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APPENDIX F: MATLAB CODE, IMAGE ANALYSIS AND EDGE DETECTION

%% Start with a clean slate
clear all;

close all;

clc;

$% Import Excel Data

rgb = imread('wound rgb-2.tif');

$ binary = imread('patient2 wound binary w measurements.tif');
$ binary = imread('patientll wound binary w measurement.tif');
$ binary = imread('patient2 wound binary w measurements.tif');
binary = imread('patient4 wound outline.tif');

$% RGB Matrix

binary imR = squeeze(binary(:,:,1));
binary imG squeeze(binary(:,:,2));
binary imB squeeze(binary(:,:,3));

%% Edge Detection
sob = edge(binary imB, 'sobel');
figure, imshow(sob)

can = edge(binary imB, 'canny');
figure, imshow(can)

%% BW Perimeter
x = 1;
new x = 1;

BW2 = bwperim(sob);

[r c] =size(BW2);
for row = 2:r
for col=1l:c
if BW2(row,col) > 0
contour = bwtraceboundary(BW2, [row, col], 'W', 8,50, 'clockwise’');
if(~isempty(contour))

[c_r, c_c] = size(contour);

while contour(x,l) > 0 && x < c_r

new(new_x, 1)
new(new_x,
new(new_x, 3)

contour(x,1);
contour(x,2);
0;

N
-
I

x = x+1;
new_xX = new_x+1;

end
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end
end
end
end

%% Reduction of Points
new x = 1;

next x = 2;

final x = 1;

copy = new;

[r c] = size(new);

while new x < r

start(1,1)
start(1,2)

new(new_x,1);
new(new_x,2);

while next x < r
check(1,1) new(next x,1);
check(1,2) new(next x,2);

if isequal(start,check)
new(next x,1) = 0;
new(next x,2) 0;
end

next X = next x + 1;
end

new X = new _x + 1;
next X = new x + 1;
end
%% Cleaned Final Matrix

row = 1;

while x < r

if new(x,1) ~= 0
final(row,1l) = new(x,1);
final(row,2) = new(x,2);
final(row,3) = 0;

row = row+l;

end
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end
%% Image Verification

copy_image = BW2;

row = 1;
[r c] = size(copy image);
[rr cc] = size(final);

for x=1l:rr

x_point = final(x,1);

y_point = final(x,2);

copy_image(x point, y point) = 1;
end

figure, imshow(copy image);
figure, imshow(can);
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